Practice guidelines are systematically developed recommendations that assist the practitioner and patient in making decisions about health care. These recommendations may be adopted, modified, or rejected according to clinical needs and constraints and are not intended to replace local institutional policies. In addition, practice guidelines developed by the American Society of Anesthesiologists (ASA) are not intended as standards or absolute requirements, and their use cannot guarantee any specific outcome. Practice guidelines are subject to revision as warranted by the evolution of medical knowledge, technology, and practice. They provide basic recommendations that are supported by a synthesis and analysis of the current literature, expert and practitioner opinion, open forum commentary, and clinical feasibility data.

This document is a revision of the “Practice guidelines for management of the difficult airway: A report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway,” adopted by the ASA in 2012 and published in 2013.1

HIGHLIGHTS BOX

These updated guidelines:

• Provide new algorithms and infographics for adult and pediatric difficult airway management.
• Emphasize awareness of the passage of time and limiting the number of attempts of different devices and techniques during difficult airway management.
• Offer noninvasive and invasive alternatives for difficult airway management.
• Recommend supplemental oxygen administration before initiating extubation process.
• Provide new evidence obtained from recent scientific literature along with findings from new surveys of expert consultants, American Society of Anesthesiologists members, and 10 participating organizations.
• Provide consideration for the development of a difficult airway management strategy including considerations for awake airway management.
• Support the development of difficult airway management.
• Provide more robust recommendations for extubation of the difficult airway.
• Provide new algorithms and infographics for adult and pediatric difficult airway management.
Methodology

Definition of Difficult Airway

For these practice guidelines, a difficult airway includes the clinical situation in which anticipated or unanticipated difficulty or failure is experienced by a physician trained in anesthesia care, including but not limited to one or more of the following: facemask ventilation, laryngoscopy, ventilation using a supraglottic airway, tracheal intubation, extubation, or invasive airway. These clinical situations are further defined as follows.

Difficult Facemask Ventilation. It is not possible to provide adequate ventilation (e.g., confirmed by end-tidal carbon dioxide detection), because of one or more of the following problems: inadequate mask seal, excessive gas leak, or excessive resistance to the ingress or egress of gas.

Difficult Laryngoscopy. It is not possible to visualize any portion of the vocal cords after multiple attempts at laryngoscopy.

Difficult Supraglottic Airway Ventilation. It is not possible to provide adequate ventilation because of one or more of the following problems: difficult supraglottic airway placement, supraglottic airway placement requiring multiple attempts, inadequate supraglottic airway seal, excessive gas leak, or excessive resistance to the ingress or egress of gas.

Difficult or Failed Tracheal Intubation. Tracheal intubation requires multiple attempts or tracheal intubation fails after multiple attempts.

Difficult or Failed Tracheal Extubation. The loss of airway patency and adequate ventilation after removal of a tracheal tube or supraglottic airway from a patient with a known or suspected difficult airway (i.e., an “at risk” extubation).

Difficult or Failed Invasive Airway. Anatomic features or abnormalities reducing or preventing the likelihood of successfully placing an airway into the trachea through the front of the neck.

Inadequate Ventilation. Indicators of inadequate ventilation include absent or inadequate exhaled carbon dioxide, absent or inadequate chest movement, absent or inadequate breath sounds, auscultatory signs of severe obstruction, cyanosis, gastric air entry or dilation, decreasing or inadequate oxygen saturation, absent or inadequate exhaled gas flow as measured by spirometry, anatomic lung abnormalities as detected by lung ultrasound, and hemodynamic changes associated with hypoxemia or hypercarbia (e.g., hypertension, tachycardia, bradycardia, arrhythmia). Additional clinical symptoms may include changed mental status or somnolence.

Purposes of the Guidelines

The purposes of these guidelines are to guide the management of patients with difficult airways, optimize first attempt success of airway management, improve patient safety during airway management, and minimize/avoid adverse events. The principal adverse outcomes associated with the difficult airway include (but are not limited to) death, brain injury, cardiopulmonary arrest, airway trauma, and damage to the teeth. The appropriate choice of medications and techniques for anesthesia care and airway management is dependent upon the experience, training, and preference of the individual practitioner, requirements or constraints imposed by associated medical issues of the patient, type of procedure, and environment in which airway management takes place. The choice of agents, techniques, and devices may be limited by federal, state, or municipal regulations or statutes.

Focus

These guidelines focus specifically on the management of the difficult airway encountered with mask ventilation, tracheal intubation, or supraglottic airway placement during procedures requiring general anesthesia, deep sedation, moderate sedation, or regional anesthesia or elective airway management without a procedure. Procedures include diagnostic, elective, and emergency procedures and invasive airway access. Airway management during cardiopulmonary resuscitation is not addressed by these guidelines. The guidelines are intended for adult and pediatric patients with either anticipated or unanticipated difficult airways, obstetric patients, intensive care (ICU) patients, and critically ill patients. The guidelines do not address patients at risk of aspiration without anatomically difficult airways, patients where difficult airways are not encountered, or physiologically difficult airways that are not anatomically difficult.‡

These guidelines do not address education, training, or certification requirements for practitioners who provide anesthesia and airway management. Some aspects of the guidelines may be relevant in other clinical contexts. The guidelines do not represent an exhaustive consideration of all manifestations of the difficult airway or all possible approaches to airway management.

Application

These guidelines are intended for use by anesthesiologists and all other individuals who perform anesthesia care or airway management. The guidelines are intended to apply to all airway management and anesthetic care delivered in inpatient (e.g., perioperative, nonoperating room, emergency department, and critical care settings) and ambulatory settings (e.g., ambulatory surgery centers and office-based surgery and procedure centers performing invasive airway procedures). Excluded are prehospital settings and individuals who do not deliver anesthetic care or perform airway management. These guidelines are also intended to serve as a resource for other physicians and patient care personnel who are involved in the care of difficult airway patients, including those involved in local policy development.

‡These include, but are not limited to, patients at increased risk for cardiorespiratory deterioration with airway management due to underlying conditions such as hypoxemia, hypotension, severe metabolic acidosis, or right ventricular failure.
Task Force Members

In 2019, the ASA Committee on Standards and Practice Parameters requested that these guidelines be updated. This update is a revision developed by an ASA-appointed task force of 15 members, including physician anesthesiologists in both private and academic practices from the United States, India, Ireland, Italy, and Switzerland; an independent consulting methodologist; and an ASA staff methodologist. Conflict-of-interest documentation regarding current or potential financial and other interests pertinent to the practice guideline were disclosed by all task force members and managed.§

Process and Evaluation of Evidence

These updated guidelines were developed by means of a six-step process. First, consensus was reached on the criteria for evidence. Second, a comprehensive literature search was conducted by an independent librarian to identify citations relevant to the evidence criteria. Third, original published articles from peer-reviewed journals relevant to difficult airway management were evaluated and added to literature included in the previous update. Fourth, consultants who had expertise or interest in difficult airway management and who practiced or worked in various settings (e.g., private and academic practice) were asked to participate in opinion surveys addressing the appropriateness, completeness, and feasibility of implementation of the draft recommendations and to review and comment on a draft of the guidelines. Fifth, additional opinions were solicited from random samples of active members of the ASA and participating organizations. Sixth, all available information was used to build consensus to finalize the Guidelines. A summary of recommendations is provided in appendix 1. Preparation of these updated guidelines followed a rigorous methodologic process, described in more detail in appendix 2 and other related publications.2–5

Criteria for literature acceptance included randomized controlled trials, prospective nonrandomized comparative studies (e.g., quasieperimental, cohort), retrospective comparative studies (e.g., case control), observational studies (e.g., correlational or descriptive statistics), and case reports or case series from peer-reviewed journals. Literature exclusion criteria included: (1) patients or practitioners described in correlational or descriptive statistics, and case reports or case series from peer-reviewed journals. Literature exclusion criteria included: (1) patients or practitioners described in the study who were specifically excluded or not identified by evidence criteria in the evidence model; (2) interventions not identified or specifically excluded in the evidence model; (3) studies with insufficient or no outcome data or reported outcomes not relevant to the evidence model; (4) articles with no original data, including review articles, descriptive letters, or editorials; (5) systematic reviews, secondary data, meta-analysis,‖ or other articles with no original data; (6) abstracts, letters, or articles not published in a peer-reviewed journal; (7) studies outside of designated search dates; (8) duplicate data presented in a different reviewed article; or (9) retracted publications.

Within the text of these guidelines, literature classifications are reported for each intervention as follows: Category A, level 1, meta-analysis of randomized controlled trials; Category A, level 2, multiple randomized controlled trials; Category A, level 3, a single randomized controlled trial; Category B, level 1, nonrandomized studies with group comparisons; Category B, level 2, nonrandomized studies with associative findings; Category B, level 3, nonrandomized studies with descriptive findings; and Category B, level 4, case series or case reports. Statistically significant outcomes (P < 0.01) are designated as either beneficial (B) or harmful (H) to the patient; statistically nonsignificant findings are designated as equivocal (E).# When available, Category A evidence is given precedence over Category B evidence for any particular outcome. The lack of sufficient scientific evidence in the literature is reported in the text of the guidelines as “insufficient evidence.”** Opinions regarding the scientific quality of the studies or opinion ratings of the strength of recommendations are not reported in this document.

Survey findings from task force–appointed expert consultants and samples of the memberships of ASA and participating organizations†† are reported in appendix 2. Survey responses for each recommendation are reported using a five-point scale based on median values from strongly agree to strongly disagree.

Guidelines

Evaluation of the Airway

Airway evaluation topics include (1) risk assessment to predict a difficult airway or risk of aspiration, and (2) airway examination (bedside and advanced). Risk assessment includes evaluation of information obtained from a patient’s history or medical records, including demographic information, clinical conditions, diagnostic tests, and patient/family interviews or questionnaires. An airway examination is intended to identify the presence of upper airway pathologies or anatomical anomalies. Issues addressed in these guidelines include: (1) measurement of facial and jaw features, (2) anatomical measurements and landmarks, (3) imaging with ultrasound or virtual laryngoscopy/bronchoscopy, (4) three-dimensional printing, and (5) bedside endoscopy.

Literature Findings. Patient demographic and personal characteristics evaluated for difficult airway risk prediction included age, sex, body mass index, weight, and height.

§Additional conflict of interest information is located after appendix 2 in this document.
‖All meta-analyses are conducted by the ASA methodology group. Meta-analyses from other sources are reviewed but not included as evidence in this document. A minimum of five independent randomized controlled trials (i.e., sufficient for fitting a random-effects model) is required for meta-analysis.

#The complete bibliography used to develop this updated advisory, arranged alphabetically by author, is available as Supplemental Digital Content 1, http://links.lww.com/ALN/C694.
**A more detailed description of the definition of insufficient evidence is described in appendix 2.
††See appendix 2 for tables reporting survey findings.
Clinical characteristics assessed included a history of difficult intubation, distorted airway anatomy, snoring, obstructive sleep apnea, diabetes mellitus, or findings from diagnostic tests (e.g., radiography, computed tomography), patient interviews, and questionnaires. Measurement of facial and jaw features included mouth opening, the ability to protrude, head and neck mobility, prominent upper incisors, presence of a beard, and an upper lip bite test. Anatomical measures included Mallampati and modified Mallampati scores, thyromental distance, sternomental distance, interincisor distance, neck circumference, ratio of neck circumference to thyromental distance, ratio of height to thyromental distance, hyomental distance, and hyomental distance ratio. Measurements obtained from ultrasound included skin-to-hyoid distance, tongue volume, and distance from skin to epiglottis.

Observational studies reported comparative demographic findings for difficult versus nondifficult airway patients, as well as sensitivity, specificity, positive predictive, negative predictive, and accuracy values for difficult laryngoscopy, supraglottic airway use, and tracheal intubation. Findings for the above patient characteristics were shown to have very high predictive and comparative variability, with sensitivity, specificity, and significance values ranging from low to very high across all patient demographic measures (Category B2-E evidence). 6–70 No single characteristic was identified as consistently being more predictive than another, and multivariate measures intended to predict difficult airways were too few and diverse among the studies to determine a common set of predictors.

Case reports identified difficult laryngoscopy or difficult intubation occurring among patients with a variety of acquired or congenital disease states (e.g., ankylosing spondylitis, degenerative osteoarthritis, Treacher–Collins, Klippel–Feil, Down syndrome, mucopolysaccharidosis, and airway masses) (Category B4-H evidence). 71–122

Observational studies reported comparative findings for facial and jaw features and anatomical measurement for difficult versus nondifficult airway patients as well as sensitivity, specificity, positive predictive, negative predictive, and accuracy values for difficult laryngoscopy and intubation. Findings for facial and jaw features, 2–11,13,14,18,27,32,38–40,42,43,45–47,49,51–54,57,58,64,68,69,123–159 anatomical measurements, 7–11,13–15,18,22,23,27–30,33,35,37–40,45–47,49,51–54,57,58,60,64,65,68,70,123–132,134–154,156,158–203 and ultrasound anatomical measurement 69,139,162,170,194,196,203–213 were shown to have very high predictive and comparative variability, with sensitivity, specificity, and significance values ranging from low to very high across all patient measures (Category B2-E evidence). No single characteristic was identified as consistently being more predictive than another, and multivariate measures intended to predict difficult airways were too few and diverse among the studies to determine a common set of predictors.

A prospective cohort study reported improved laryngeal views (during tongue protrusion) when transnasal endoscopy was added to the preoperative bedside evaluation (Category B2-B evidence). 214 and an observational study utilizing preoperative endoscopic examination as an added airway assessment tool reported that airway management plans were revised in 26% of patients based on the results of this examination (Category B3-B evidence). 215 Observational studies and case reports indicated that radiography and computed tomography scans identified anatomical characteristics such as laryngeal deviations, cervical abnormalities, fractures, and abscesses that may suggest a potential difficult airway (Category B3-B and B4-B evidence). 90,216–219 Observational studies indicated that patient questionnaires may identify patients at risk of difficult ventilation and intubation (Category B3-B evidence). 163,200,221 The literature was insufficient to evaluate the predictive value of virtual laryngoscopy/bronchoscopy or three-dimensional printing.

Survey Findings. The consultants and members of participating organizations strongly agree with recommendations to ensure that an airway risk assessment is performed by the person(s) responsible for airway management whenever feasible before the initiation of anesthetic care or airway management and with the recommendation to conduct an airway physical examination before the initiation of anesthetic care or airway management.

Recommendations for Evaluation of the Airway

- Before the initiation of anesthetic care or airway management, ensure that an airway risk assessment is performed by the person(s) responsible for airway management whenever feasible to identify patient, medical, surgical, environmental, and anesthetic factors (e.g., risk of aspiration) that may indicate the potential for a difficult airway.
- When available in the patient’s medical records, evaluate demographic information, clinical conditions, diagnostic test findings, patient/family interviews, and questionnaire responses.
- Assess multiple demographic and clinical characteristics to determine a patient’s potential for a difficult airway or aspiration.
- Before the initiation of anesthetic care or airway management, conduct an airway physical examination to further identify physical characteristics that may indicate the potential for a difficult airway.
- The physical examination may include assessment of facial features‡‡ and assessment of anatomical measurements and landmarks.§§
- Additional evaluation to characterize the likelihood or nature of the anticipated airway difficulty may include

‡‡Examples of facial features include mouth opening, the ability to protrude, head and neck mobility, prominent upper incisors, presence of a beard, and the upper lip bite test.
§§Examples of anatomical measures include Mallampati and modified Mallampati scores, thyromental distance, sternomental distance, interincisor distance, neck circumference, ratio of neck circumference to thyromental distance, ratio of height to thyromental distance, hyomental distance, and hyomental distance ratio. Measurements obtained from ultrasound included skin-to-hyoid distance, tongue volume, and distance from skin to epiglottis.
Preparation for Difficult Airway Management

Topics related to interventions intended to prepare for difficult airway management include (1) the availability of equipment for airway management (e.g., items for anesthetizing locations, portable storage unit, cart, or trolley for difficult airway management); (2) informing the patient with a known or suspected difficult airway; (3) preoxygenation; (4) patient positioning; (5) sedative administration; (6) local anesthesia; (7) supplemental oxygen during difficult airway management; (8) patient monitoring; and (9) human factors.##

Literature Findings

Although the need for immediate access to difficult airway management equipment is a well-accepted practice, the literature is insufficient to directly evaluate outcomes associated with the availability of such equipment. In addition, the literature is insufficient to evaluate the outcomes associated with informing the patient of a known or suspected difficult airway, preoxygenation, administration of sedatives or local anesthesia, or patient monitoring. One randomized controlled trial comparing the ramped with sniffing positions reported equivocal findings ($P > 0.01$) for laryngoscopic view and intubation success (Category A3-E evidence). A nonrandomized study comparing the sniffing position with head and neck raised beyond the sniffing position reported improved laryngeal views with the raised position (Category B-2 B evidence).

Survey Findings

The consultants and members of participating organizations strongly agree with recommendations to ensure that a skilled individual is present or immediately available to assist with airway management if a difficult airway is known or suspected; inform the patient or responsible person of the special risks and procedures pertaining to management of the difficult airway; and administer oxygen before initiating management of the difficult airway and to deliver supplemental oxygen throughout the process of difficult airway management, including extubation.

Recommendations for Preparation for Difficult Airway Management

- Ensure that airway management equipment is available in the room.

Anticipated Difficult Airway Management

Airway management of an anticipated difficult airway consists of interventions addressing awake tracheal intubation, anesthetized tracheal intubation, or both awake and anesthetized intubation.

Literature Findings for Awake Tracheal Intubation

Studies with observational findings reported successful awake intubation in 88 to 100% of anticipated difficult airway patients (Category B3-B evidence). Case reports for awake intubation (e.g., blind tracheal intubation, intubation through supraglottic devices, optically guided intubation) also observed success with anticipated difficult airway patients (Category B4-B evidence).

Literature Findings for Anesthetized Tracheal Intubation

The literature is insufficient to evaluate the benefit or harm of the following interventions: use of cricoid pressure (i.e., Sellick maneuver), pressure-limited mask ventilation versus ablation of spontaneous ventilation, maintenance of spontaneous ventilation versus ablation of spontaneous ventilation, administration of neuromuscular blockade to improve mask ventilation, or rocuronium with sugammadex versus suxamethonium or succinylcholine for airway management of anticipated difficult airway patients.

Literature Findings for Both Awake and Anesthetized Intubation

Interventions addressed for anticipated difficult airway patients receiving either awake or anesthetized intubation.

+++See table 2 for examples of specialized equipment for a portable storage unit.

+++The uncooperative or pediatric patient may impede opportunities for oxygen administration.

+++Opportunities for supplemental oxygen administration include (but are not limited to) oxygen delivery by nasal cannulae, facemask, or supraglottic insufflation.

+++This recommendation does not preclude local or institutional policies that require more stringent monitoring.
PRACTICE PARAMETERS

Airway management include (1) airway maneuvers, (2) non-invasive airway management devices, (3) combination techniques, (4) invasive airway management interventions, and (5) extracorporeal membrane oxygenation (ECMO).

Airway Maneuvers. Two case reports indicated that use of a backward-upward–rightward pressure of the larynx maneuver resulted in successful intubation of difficult airway patients (Category B4-B evidence). One case report observed successful intubation using external cricoid manipulation after failed direct intubation (Category B4-B evidence).

Noninvasive Devices. Noninvasive devices for airway management of patients with anticipated difficult airways include rigid laryngoscopic blades of alternative design and size; adjuncts (e.g., introducers, bougies, stylets, and alternative tracheal tubes); videolaryngoscopes; flexible intubation scopes; supraglottic airway devices; lighted or optical stylets; and rigid bronchoscopes. The literature is insufficient to evaluate which devices are most effective when attempted first after failed intubation, nor is the literature sufficient to evaluate the most effective order of devices to be used for attempted intubation of an anticipated difficult airway.

Rigid laryngoscopic blades of alternative design and size. A randomized controlled trial comparing levering laryngoscopes to standard laryngoscopes reported no differences in laryngoscopic view, but shorter times to intubation and fewer intubation maneuvers were needed for successful intubation with the levering laryngoscope (Category A3-B evidence). Case reports observed intubation success with levering laryngoscopic blades (Category B4-B evidence). Case reports of mechanical failure and arytenoid dislocation have been noted with levering blades (Category B4-H evidence).

Adjuncts (e.g., introducers, bougies, stylets, alternative tracheal tubes, intubating stylets, or tube changers). Observational studies reported intubation success ranging from 87 to 100% of patients (Category B3-B evidence), and case reports observed intubation success with bougies and stylets (Category B4-B evidence).

Videolaryngoscopes. Meta-analyses of randomized controlled trials comparing video-assisted laryngoscopy with direct laryngoscopy in patients with predicted difficult airways reported improved laryngeal views, a higher frequency of successful intubations, a higher frequency of first attempt intubations, and fewer intubation maneuvers with video-assisted laryngoscopy (Category A1-B evidence). Randomized controlled trials comparing video-assisted laryngoscopy with awake laryngoscopy with a flexible intubation scope reported equivocal findings for laryngeal view, visualization time, first attempt intubation success, and time to intubation (Category A2-E evidence). Randomized controlled trials comparing channel-guided videolaryngoscopes with non-channel-guided videolaryngoscopes reported equivocal findings for laryngeal view, intubation success, first attempt intubation, time to intubation, and needed intubation maneuvers (Category A3-E evidence). Randomized controlled trials reported equivocal findings for laryngoscopic view, intubation success, first attempt intubation success, and time to intubation when hyperangulated videolaryngoscopes were compared with nonangulated videolaryngoscopes for anticipated difficult airways (Category A2-E evidence).

Observational studies indicated intubation success rates for videolaryngoscopes ranging from 85 to 100% of patients and first attempt successful intubation rates ranging from 51 to 100% (Category A3-E evidence). Case reports observed videolaryngoscope intubation successes with a wide range of difficult airway conditions (Category B4-B evidence). Adverse outcomes that may occur include sore throat, laryngospasm, lip, dental, or mucosal injuries (Category B4-H evidence).

Flexible intubation scopes. A nonrandomized comparative study comparing intubation with a flexible bronchoscope versus direct laryngoscopy reported equivocal findings for complicated intubations (Category B2-E evidence). Studies with observational findings for flexible intubation scopes indicated success rates ranging from 78 to 100% (Category B3-B evidence). Case reports also observed successful intubation with flexible intubation scopes (Category B4-B evidence).

Supraglottic airway devices. Observational studies indicated successful supraglottic airway insertion and intubation ranging from 65 to 100% of anticipated difficult airway patients (Category B3-B evidence). Three observational studies reported oxygen desaturation occurring in 1.8 to 3.3% of patients after supraglottic airway placement (Category B3-H evidence). Case reports observed successful ventilation and intubation with various supraglottic airways (Category B4-B evidence).

Randomized controlled trials comparing flexible intubation through supraglottic airways versus flexible intubation scopes alone reported a higher frequency of first attempt intubation success with the supraglottic airway (Category A2-B evidence). Findings were equivocal for overall successful intubation and time to intubation (Category A2-E evidence). A randomized controlled trial comparing second generation supraglottic airways with first generation supraglottic airways reported faster times to intubation with second generation supraglottic airways (Category A2-B evidence). Randomized controlled trials reported equivocal findings for overall successful intubation (Category A2-E evidence).

Lighted or optical stylets. A randomized controlled trial comparing intubation with a lightwand versus blind intubation for patients with anticipated difficult airways reported a significantly higher frequency of successful intubations and shorter

See appendix 2 for meta-analysis details.
intubation times for the lightwand (Category A3-B evidence). Two randomized controlled trials reported shorter intubation times when lighted stylets were compared with direct laryngoscopy (Category A2-B evidence); findings were equivocal for successful intubation and first attempt success (Category A2-E evidence). Randomized controlled trials comparing lighted stylets with flexible bronchoscopes reported shorter intubation times with lighted stylets (Category A3-B evidence).

Observational studies reported successful intubation ranging from 84.9 to 100% of anticipated difficult airway patients when lighted stylets were used (Category B3-B evidence). Case reports observed successful intubations with lighted and optical stylets (Category B4-B evidence).

Rigid bronchoscopes. The literature is insufficient to evaluate the benefit or harm of the rigid bronchoscope for patients with anticipated difficult airways.

Combination techniques. Examples of combination techniques include: (1) direct or video laryngoscopy combined with either optical/video stylet, flexible intubation scope, airway exchange catheter, retrograde-placed guide wire, or supraglottic airway placement and (2) supraglottic airway combined with either optical/video stylet or flexible intubation scope (with or without hollow guide catheter).

A randomized controlled trial comparing a lightwand combined with direct laryngoscopy versus a lightwand alone for intubation reported equivocal findings for successful intubation, first attempt success, time to intubation, and number of intubation attempts (Category A3-E evidence). A randomized controlled trial comparing a videolaryngoscope combined with a flexible bronchoscope reported a greater first attempt success rate with the combination technique than with a videolaryngoscope alone (Category A3-B evidence).

Observational studies indicated successful intubation with combination techniques ranging from 80 to 90% and first attempt success rates ranging from 50 to 100% of anticipated difficult airway patients (Category B3-B evidence). Case reports also observed successful intubation occurring with various combinations of techniques (Category B4-B evidence).

Invasive interventions. Invasive airway management interventions for anticipated difficult airway management include retrograde wire–guided intubation, front-of-neck percutaneous or surgical cricothyotomy/tracheostomy, awake cricothyotomy/tracheostomy, and ECMO. Case reports observed successful intubations when retrograde wire–graded intubation was performed for patients with anticipated difficult airways (Category B4-B evidence). A case report observes successful percutaneous tracheostomy for an anticipated difficult airway patient as an alternative after unsuccessful surgical tracheostomy (Category B3-B evidence). The literature is insufficient to evaluate awake cricothyrotomy/tracheostomy and ECMO for anticipated difficult airway patients.

Survey Findings for Anticipated Difficult Airway Management. The consultants and members of participating organizations strongly agree with the recommendation to identify a strategy for (1) awake intubation, (2) the patient who can be adequately ventilated but is difficult to intubate, (3) the patient who cannot be ventilated or intubated, and (4) alternative approaches to airway management failure. The consultants strongly agree and members of participating organizations agree or strongly agree with recommendations to perform awake intubation, when appropriate, if the patient is suspected to be a difficult intubation and difficult ventilation (face mask/supraglottic airway) is anticipated; perform awake intubation, when appropriate, if the patient is suspected to be a difficult intubation and increased risk of aspiration is anticipated; and perform awake intubation, when appropriate, if the patient is suspected to be a difficult intubation and the patient is likely incapable of tolerating a brief apneic episode. The consultants and members of participating organizations strongly agree with the recommendation to perform awake intubation, when appropriate, if the patient is suspected to be a difficult intubation and difficulty with emergency invasive airway rescue is anticipated.

The consultants and members of participating organizations strongly agree with the recommendation to identify a preferred sequence of noninvasive devices to use for airway management if a noninvasive approach is selected. The consultants strongly agree and members of participating organizations agree or strongly agree that if difficulty is encountered with individual techniques, combination techniques may be performed. The consultants and members of participating organizations strongly agree with the recommendation to be aware of the passage of time the number of attempts and oxygen saturation. The consultants strongly agree and members of participating organizations agree or strongly agree with the recommendation to provide and test mask ventilation between attempts. The consultants and members of participating organizations strongly agree with recommendations to limit the number of attempts at tracheal intubation or supraglottic airway placement to avoid potential injury and complications; identify a preferred intervention if an elective invasive approach to the airway is selected; ensure that an invasive airway is performed by an individual trained in invasive airway techniques whenever possible; and identify an alternative invasive intervention if the selected invasive approach fails or is not feasible.

Recommendations for Anticipated Difficult Airway Management

- Have a preformulated strategy for management of the anticipated difficult airway.
 - This strategy will depend, in part, on the anticipated surgery, the condition of the patient, patient cooperation/consent, the age of the patient, and the skills and preferences of the anesthesiologist.
 - Identify a strategy for: (1) awake intubation, (2) the patient who can be adequately ventilated but is difficult to intubate, (3) the patient who cannot be ventilated or intubated, and (4) difficulty with emergency invasive airway rescue.
When appropriate, perform awake intubation if the patient is suspected to be a difficult intubation and one or more of the following apply: (1) difficult ventilation (face mask/supraglottic airway), (2) increased risk of aspiration, (3) the patient is likely incapable of tolerating a brief apnic episode, or (4) there is expected difficulty with emergency invasive airway rescue.****

The uncooperative or pediatric patient may restrict the options for difficult airway management, particularly options that involve awake intubation. Airway management in the uncooperative or pediatric patient may require an approach (e.g., intubation attempts after induction of general anesthesia) that might not be regarded as a primary approach in a cooperative patient.

Proceed with airway management after induction of general anesthesia when the benefits are judged to outweigh the risks.

For either awake or anesthetized intubation, airway maneuvers may be attempted to facilitate intubation.

Before attempting intubation of the anticipated difficult airway, determine the benefit of a noninvasive versus invasive approach to airway management.

- If a noninvasive approach is selected, identify a preferred sequence of noninvasive devices to use for airway management.††††
 - If difficulty is encountered with individual techniques, combination techniques may be performed.‡‡‡‡
 - Be aware of the passage of time, the number of attempts, and oxygen saturation.
 - Provide and test mask ventilation after each attempt, when feasible.
 - Limit the number of attempts at tracheal intubation or supraglottic airway placement to avoid potential injury and complications.

- If an elective invasive approach to the airway is selected, identify a preferred intervention.§§§§
 - Ensure that an invasive airway is performed by an individual trained in invasive airway techniques, whenever possible.
 - If the selected approach fails or is not feasible, identify an alternative invasive intervention.

- Initiate ECMO when/if appropriate and available.

****Any one factor alone (i.e., assessed difficulty with intubation or ventilation, increased risk of aspiration or desaturation) may be of sufficient clinical importance to warrant an awake intubation.

††††Noninvasive devices include rigid laryngoscopic blades of alternative designs and sizes (with adequate face mask ventilation after induction), adjuncts (e.g., introducers, bougies, stylets, alternative tracheal tubes, and supraglottic airways), video/video-assisted laryngoscopy, flexible intubation scopes, supraglottic airway devices, lighted or optical stylets, alternative optical laryngoscopes, and rigid bronchoscopes.

‡‡‡‡Combination techniques may include but are not limited to (1) direct or video laryngoscopy combined with either optical/video stylet, flexible scope intubation, airway exchange catheter, retrograde-placed guide wire or supraglottic airway placement and (2) supraglottic airway combined with either optical/video stylet, flexible scope intubation (with or without hollow guide catheter), or retrograde-placed guide wire.

§§§§Invasive interventions may include, but are not limited to, one of the following techniques: surgical cricothyotomy (e.g., scalpel-bougie-tube), needle cricothyotomy with a pressure-regulated device, large-bore cannula cricothyotomy or surgical tracheostomy, retrograde wire-guided intubation, and percutaneous tracheostomy.

Unanticipated and Emergency Difficult Airway Management

Airway management of an unanticipated or emergency difficult airway consists of interventions addressing (1) calling for help, (2) optimization of oxygenation, (3) use of a cognitive aid, (4) noninvasive airway management devices, (5) combination techniques, (6) invasive airway management interventions, and (7) ECMO.

Literature Findings. The literature is insufficient to evaluate patient outcomes associated with the immediate access to airway management support equipment or calling for help, although the necessity of these interventions is obvious. The literature is also insufficient to evaluate difficult airway patient outcomes associated with the use of a visual aid, cognitive aid, or algorithm for unanticipated or emergency difficult airways.

Case reports have observed successful emergency ventilation via tube exchangers using expiratory ventilation assistance after multiple failed intubation attempts (Category B4-B evidence).475,476 Devices for noninvasive airway management of patients with unanticipated or emergency difficult airways include rigid laryngoscopic blades of alternative designs and sizes; adjuncts (e.g., introducers, bougies, stylets, and alternative tracheal tubes), videolaryngoscopes; flexible intubation scopes; supraglottic airway devices (supraglottic airways); lighted or optical stylets; and rigid bronchoscopes.

The literature is insufficient to evaluate patient outcomes associated with rigid laryngoscopic blades of alternative designs and sizes for patients with unanticipated or emergency difficult airways. Observational findings from a randomized trial reported a first attempt intubation success rate for difficult airways of 96% with bougies and 82% with stylets and tracheal tubes in an emergency department (Category B3-B evidence).177 Case reports observed intubation successes with bougies, introducers, and stylets for patients with unanticipated or emergency difficult airways (Category B4-B evidence).114,478–485

Nonrandomized studies comparing videolaryngoscopes with direct laryngoscopy reported equivocal findings for intubation success with difficult airways in emergency departments (Category B1-E evidence).486,487 Observational studies indicated successful videolaryngoscope-guided intubation rates after failed intubation ranging from 92 to 100% for unanticipated and emergency difficult airways (Category B4-B evidence).488–491 Case reports also observed successful intubation with videolaryngoscopes in unanticipated and emergency difficult airways (Category B4-B evidence).492–496 A retrospective observational study reported a flexible bronchoscopy success rate of 78% for intubation rescue after failed direct laryngoscopy (Category B3-B evidence).488 Case reports of flexible bronchoscopy or fiberoptic
nasotracheal intubation observed successful rescue intubations for unanticipated and emergency difficult airways (Category B4-B evidence).\(^{497-503}\)

A retrospective observational study reported a 78% successful rescue intubation rate, and another observational study reported 94.1% successful rescue ventilation with supraglottic airway placement (Category B3-B evidence).\(^{488,504}\) Case reports also observed successful rescue ventilation and intubation using supraglottic airways for unanticipated and emergency difficult airways (Category B4-B evidence).\(^{505-521}\)

A retrospective observational study reported a success rate with a lighted stylet of 77% for intubation rescue after failed direct laryngoscopy (Category B3-B evidence).\(^{488}\) Case reports observed successful intubations with lighted stylets after failed direct laryngoscopies for emergency airways (Category B4-B evidence).\(^{522,523}\) A case report observed successful intubation with a rigid bronchoscope in an emergency airway obstruction case (Category B4-B evidence).\(^{524}\)

An observational study reported successful intubation in 97.7%, first attempt success in 86.4%, and successful ventilation in 100% of unanticipated difficult airway patients using a combination of a supraglottic airway and lighted stylet (Category B3-B evidence).\(^{525}\) Case reports also observed intubation success for unanticipated and emergency airway patients when combination techniques were used (Category B4-B evidence).\(^{526-536}\) The literature is insufficient to evaluate which of the above devices are most effective when attempted first after failed intubation, nor is the literature sufficient to evaluate the most effective order of devices to be used for attempted intubation of an unanticipated or emergency difficult airway.

Invasive airway management interventions for unanticipated and emergency difficult airway management include retrograde wire-guided intubation, front-of-neck percutaneous or surgical cricothyrotomy/tracheostomy, awake cricothyrotomy/tracheostomy, jet ventilation, and ECMO. A case series of two patients reported successful intubation using retrograde wire-guided intubation after failed intubation through a supraglottic airway (Category B4-B evidence).\(^{537}\) Observational findings from a randomized controlled trial comparing percutaneous dilatational tracheotomy with percutaneous cricothyrotomy reported successful procedure rates of 97.6 and 95.3% (Category B3-B evidence),\(^{538}\) and case reports also observed success with percutaneous procedures (Category B4-B evidence).\(^{539-544}\)

A retrospective observational study reported restoration of oxygen saturation levels to above 90% when rescue transtracheal jet ventilation was used (Category B3-B evidence).\(^{545}\) and case reports observed improvements in oxygen saturation levels with supraglottic jet oxygenation in “cannot intubate, cannot ventilate” situations (Category B4-B evidence).\(^{546,547}\) Case reports observed oxygen saturations of 72 to 100% with the use of ECMO for difficult airways before intubation attempts for emergency procedures (Category B4-B evidence).\(^{548-550}\)

Survey Findings for Unanticipated and Emergency Difficult Airway Management. The consultants and members of participating organizations strongly agree with recommendations to determine the benefit of waking and/or restoring spontaneous breathing upon encountering an unanticipated difficult airway; determine the benefit of a noninvasive versus invasive approach to airway management; and identify a preferred sequence of noninvasive devices to use for airway management if a noninvasive approach is selected.

The consultants strongly agree and members of participating organizations agree or strongly agree that if difficulty is encountered with individual techniques, combination techniques may be performed. The consultants and members of participating organizations strongly agree with recommendations to be aware of the passage of time, the number of attempts, and oxygen saturation; provide and test mask ventilation between attempts; limit the number of attempts at transtracheal intubation or supraglottic airway placement to avoid potential injury and complications; identify a preferred intervention if an invasive approach to the airway is necessary (i.e., cannot intubate, cannot ventilate); ensure that an invasive airway is performed by an individual trained in invasive airway techniques, whenever possible; ensure that an invasive airway is performed as rapidly as possible; and identify an alternative invasive intervention if the selected invasive approach fails or is not feasible.

Recommendations for Unanticipated and Emergency Difficult Airway Management

- Call for help.
- Optimize oxygenation.\(\text{Example:} \text{Examples include low- or high-flow nasal oxygen during efforts securing a tube.}\)
- When appropriate, refer to an algorithm#### and/or cognitive aid.
- Upon encountering an unanticipated difficult airway:
 - Determine the benefit of waking and/or restoring spontaneous breathing.
 - Determine the benefit of a noninvasive versus invasive approach to airway management.
 - If a noninvasive approach is selected, identify a preferred sequence of noninvasive devices to use for airway management.*****
 - If difficulty is encountered with individual techniques, combination techniques may be performed.
 - Be aware of the passage of time, the number of attempts, and oxygen saturation.
 - Provide and test mask ventilation after each attempt, when feasible.

####See fig. 1 to 4 for examples of algorithms or cognitive aids.
Confirmation of Tracheal Intubation

Literature Findings. Studies with observational findings indicate that capnography or end-tidal carbon dioxide monitoring confirms tracheal intubation in 88.5 to 100% of difficult airway patients (Category B3-B evidence). Case reports also observed intubation confirmation with capnography (Category B4-B evidence). The literature is insufficient to evaluate whether visualization (any technique), flexible bronchoscopy, ultrasonography, or radiography can be effective in confirming appropriate tracheal intubation.

Survey Findings. The consultants and members of participating organizations strongly agree with the recommendation to confirm tracheal intubation using capnography or end-tidal carbon dioxide monitoring. The consultants strongly agree and members of participating organizations agree or strongly agree with the recommendation that when uncertain about the location of the tracheal tube, determine whether to either remove it and attempt ventilation or use additional techniques to confirm positioning of the tube.

Recommendations for Confirmation of Tracheal Intubation
- Confirm tracheal intubation using capnography or end-tidal carbon dioxide monitoring.
- When uncertain about the location of the tracheal tube, determine whether to either remove it and attempt ventilation or use additional techniques to confirm positioning of the tracheal tube.

Extubation of the Difficult Airway

An extubation strategy includes interventions that may be used to facilitate airway management associated with extubation of a difficult airway. Extubation intervention topics addressed by these guidelines include: (1) assessment of patient readiness for extubation, (2) the presence of a skilled individual to assist with extubation, (3) selection of an appropriate time and location for extubation, (4) planning for possible reintubation, (5) elective tracheostomy, (6) awake extubation or supraglottic airway removal, (7) supplemental oxygen throughout the extubation process, and (8) extubation with an airway exchange catheter or supraglottic airway. The task force regards the concept of an extubation strategy as a logical extension of the intubation strategy.

Literature Findings. A retrospective observational study comparing successfully extubated patients with patients who failed extubation observed differences in duration of intubation; conditions associated with failed extubation included airway granulations and subglottic stenosis (Category B1-H evidence). An observational study reported that staged extubation and reintubation with a Cook airway exchange catheter was successful in 92% of known or presumed difficult extubation patients (Category B3-B evidence). Another observational study reported single occurrences of a wire in the esophagus, a nontolerable cough, and gagging or salivaation with a Cook airway exchange catheter (Category B3-H evidence). A case report observed successful extubation with an airway exchange catheter (Category B3-B evidence).

Survey Findings. The consultants and members of participating organizations strongly agree with recommendations to have a preformulated strategy for extubation and subsequent airway management, ensure that a skilled individual is present to assist with extubation, selection of an appropriate time and location for extubation, awake extubation or supraglottic airway removal, supplemental oxygen, planning for possible reintubation, and elective tracheostomy for difficult airway patients.

Recommendations for Extubation of the Difficult Airway
- If an invasive approach to the airway is necessary (i.e., cannot intubate, cannot ventilate), identify a preferred intervention.
 - Ensure that an invasive airway is performed by an individual trained in invasive airway techniques, whenever possible.
 - Ensure that an invasive airway is performed as rapidly as possible.
 - If the selected invasive approach fails or is not feasible, identify an alternative invasive intervention.
 - Initiate ECMO when/if appropriate and available.

Noninvasive devices include rigid laryngoscopic blades of alternative design and size (with adequate face mask ventilation after induction), adjuncts (e.g., introducers, bougies, styles, alternative tracheal tubes, and supraglottic airways), video/video-assisted laryngoscopy, flexible intubation scopes, supraglottic airway devices, lighted optical styles, alternative optical laryngoscopes, and rigid bronchoscopes.

Invasive interventions may include surgical cricothyrotomy (e.g., scalpel-bougie technique), surgical tracheostomy, needle cricothyrotomy with pressure-regulated ventilation (e.g., transtracheal jet ventilation or other pressure-regulated techniques), and large-bore cannula cricothyrotomy (including Seldinger guided techniques).
consultants and members of participating organizations strongly agree with recommendations to evaluate the risks and benefits of awake extubation versus extubation before the return to consciousness and assess the clinical factors that may produce an adverse impact on ventilation after the patient has been extubated.

Recommendations for Extubation of the Difficult Airway

- Have a preformulated strategy for extubation and subsequent airway management.
 - This strategy will depend, in part, on the surgery/procedure, other perioperative circumstances, the condition of the patient, and the skills and preferences of the clinician.
- Assess patient readiness for extubation.
- Ensure that a skilled individual is present to assist with extubation when feasible.
- Select an appropriate time and location for extubation when possible.
- Assess the relative clinical merits and feasibility of the short-term use of an airway exchange catheter and/or supraglottic airway that can serve as a guide for expedited reintubation.
 - Minimize the use of an airway exchange catheter with pediatric patients.
- Before attempting extubation, evaluate the risks and benefits of elective surgical tracheostomy.
- Evaluate the risks and benefits of awake extubation versus extubation before the return to consciousness.
- When feasible, use supplemental oxygen throughout the extubation process.
- Assess the clinical factors that may produce an adverse impact on ventilation after the patient has been extubated.

Follow-up Care

Follow-up care includes the topics of: (1) postextubation care (i.e., steroids, racemic epinephrine), (2) postextubation counseling (i.e., informing and advising the patient or responsible individual of the occurrence and potential complications associated with a difficult airway), (3) documentation of difficult airway and management in the medical record and to the patient, and (4) registration with a difficult airway notification service.

Literature Findings. The literature is insufficient to evaluate the benefits of postextubation steroids or epinephrine, counseling, documentation in the medical record, or registration with a difficult airway notification service. A case report of a difficult airway patient who was awakened after failed intubation indicated that records of previous difficult intubations were unavailable (Category B4-H evidence).

Survey Findings. The consultants and members of participating organizations strongly agree with the recommendation to inform the patient (or responsible person) of the airway difficulty that was encountered to provide the patient (or responsible person) with information to guide and facilitate the delivery of future care and to document the presence and nature of the airway difficulty in the medical record to guide and facilitate the delivery of future care.

Recommendations for Follow-up Care.

- Use postextubation steroids and/or racemic epinephrine when appropriate.
- Inform the patient or a responsible person of the airway difficulty that was encountered to provide the patient (or responsible person) with a role in guiding and facilitating the delivery of future care.
 - The information conveyed may include (but is not limited to) the presence of a difficult airway, the apparent reasons for difficulty, how the intubation was accomplished, and the implications for future care.
- Document the presence and nature of the airway difficulty in the medical record to guide and facilitate the delivery of future care.
 - Instruct the patient to register with an emergency notification service when appropriate and feasible.

§§§§§These interventions are considered advanced techniques.

∥∥∥∥∥Aspects of documentation include, but are not limited to, (1) a description of the airway difficulties that were encountered, distinguishing between difficulties encountered in facemask or supraglottic airway ventilation and difficulties encountered in tracheal intubation and (2) a description of the various airway management techniques that were used, indicating the extent to which each of the techniques served either a beneficial or detrimental role in management of the difficult airway.
Appendix 1: Summary of Recommendations

Recommendations for Evaluation of the Airway

- Before the initiation of anesthetic care or airway management, ensure that an airway risk assessment is performed by the person(s) responsible for airway management whenever feasible to identify patient, medical, surgical, environmental, and anesthetic factors (e.g., risk of aspiration) that may indicate the potential for a difficult airway.
 - When available in the patient’s medical records, evaluate demographic information, clinical conditions, diagnostic test findings, patient/family interviews, and questionnaire responses.
 - Assess multiple demographic and clinical characteristics to determine a patient’s potential for a difficult airway or aspiration.

- Before the initiation of anesthetic care or airway management, conduct an airway physical examination to further identify physical characteristics that may indicate the potential for a difficult airway.
 - The physical examination may include assessment of facial features and assessment of anatomical measurements and landmarks.
 - Additional evaluation to characterize the likelihood or nature of the anticipated airway difficulty may include bedside endoscopy, virtual laryngoscopy/bronchoscopy, or three-dimensional printing.

- Assess multiple airway features to determine a patient’s potential for a difficult airway or aspiration.

Recommendations for Preparation for Difficult Airway Management

- Ensure that airway management equipment is available in the room.
- Ensure that a portable storage unit that contains specialized equipment for difficult airway management is immediately available.
- If a difficult airway is known or suspected:
 - Ensure that a skilled individual is present or immediately available to assist with airway management when feasible.
 - Inform the patient or responsible person of the special risks and procedures pertaining to management of the difficult airway.
 - Properly position the patient, administer supplemental oxygen before initiating management of the difficult airway, and continue to deliver supplemental oxygen whenever feasible throughout the process of difficult airway management, including extubation.
 - Ensure that, at a minimum, monitoring according to the ASA Standards for Basic Anesthesia Monitoring is performed immediately before, during, and after airway management of all patients.

Recommendations for Anticipated Difficult Airway Management

- Have a preformulated strategy for management of the anticipated difficult airway.
 - This strategy will depend, in part, on the anticipated surgery, the condition of the patient, patient cooperation/consent, the age of the patient, and the skills and preferences of the anesthesiologist.
 - Identify a strategy for: (1) awake intubation, (2) the patient who can be adequately ventilated but is difficult to intubate, (3) the patient who cannot be ventilated or intubated, and (4) difficulty with emergency invasive airway rescue.
 - When appropriate, perform awake intubation if the patient is suspected to be a difficult intubation and one or more of the following apply: (1) difficult ventilation (face mask/supraglottic airway), (2) increased risk of aspiration, (3) the patient is likely incapable of tolerating a brief apneic episode, or (4) there is expected difficulty with emergency invasive airway rescue.
 - The uncooperative or pediatric patient may restrict the options for difficult airway management, particularly options that involve awake intubation. Airway management in the uncooperative or pediatric patient may require an approach (e.g., intubation attempts after induction of general anesthesia) that might not be regarded as a primary approach in a cooperative patient.

###Examples of facial features include mouth opening, the ability to prognath, head and neck mobility, prominent upper incisors, presence of a beard, and the upper lip bite test.

###Examples of anatomical measures include Mallampati and modified Mallampati scores, thyromental distance, sternal notch distance, interincisor distance, neck circumference, ratio of neck circumference to thyromental distance, ratio of height to thyromental distance, hyomental distance, and hyomental distance ratio. Measurements obtained from ultrasound included skin-to-hyoid distance, tongue volume, and distance from skin to epiglottis.

In addition to airway evaluation, three-dimensional printing may be a useful means of testing methods for device insertion or for practitioner training.

See table 1 for examples of appropriate airway equipment.

See table 2 for examples of specialized equipment for a portable storage unit.

The uncooperative or pediatric patient may impede opportunities for oxygen administration.

Opportunities for supplemental oxygen administration include (but are not limited to) oxygen delivery by nasal cannulae, facemask, or supraglottic insufflation.

This recommendation does not preclude local or institutional policies that require more stringent monitoring.

Any one factor alone (i.e., assessed difficulty with intubation or ventilation, increased risk of aspiration or desaturation) may be of sufficient clinical importance to warrant an awake intubation.
Practice Guidelines for Difficult Airway Management

Recommendations for Unanticipated and Emergency Difficult Airway Management

- Proceed with airway management after induction of general anesthesia when the benefits are judged to outweigh the risks.
- For either awake or anesthetized intubation, airway maneuver(s) may be attempted to facilitate intubation.
- Before attempting intubation of the anticipated difficult airway, determine the benefit of a noninvasive versus invasive approach to airway management.
 - If a noninvasive approach is selected, identify a preferred sequence of noninvasive devices to use for airway management.
 - If difficulty is encountered with individual techniques, combination techniques may be performed.
 - Be aware of the passage of time, the number of attempts, and oxygen saturation.
 - Provide and test mask ventilation after each attempt, when feasible.
 - Limit the number of attempts at tracheal intubation or supraglottic airway placement to avoid potential injury and complications.
 - If an elective invasive approach to the airway is selected, identify a preferred intervention.
 - Ensure that an invasive airway is performed by an individual trained in invasive airway techniques, whenever possible.
 - If the selected approach fails or is not feasible, identify an alternative invasive intervention.
 - Initiate ECMO when/if appropriate and available.

Recommendations for Confirmation of Tracheal Intubation

- Confirm tracheal intubation using capnography or end-tidal carbon dioxide monitoring.
- When uncertain about the location of the tracheal tube, determine whether to either remove it and attempt ventilation or use additional techniques to confirm positioning of the tracheal tube.

Noninvasive devices include rigid laryngoscopic blades of alternative designs and sizes (with adequate face mask ventilation after induction), adjuncts (e.g., introducers, bougies, stylets, alternative tracheal tubes, and supraglottic airways), video/video-assisted laryngoscopy, flexible intubation scopes, supraglottic airway devices, lighted optical laryngoscopes, and rigid bronchoscopes.

Combination techniques may include, but are not limited to, direct or video laryngoscopy combined with either optical/video stylet, flexible scope intubation, airway exchange catheter, retrograde-placed guide wire, or supraglottic airway placement and (2) supraglottic airway combined with either optical/video stylet, flexible scope intubation (with or without hollow guide catheter), or retrograde-placed guide wire.

Invasive interventions may include, but are not limited to, one of the following techniques: surgical cricothyotomy (e.g., scalpel-bougie-tube), needle cricothyotomy with a pressure-regulated device, large-bore cannula cricothyotomy or surgical tracheostomy, retrograde wire-guided intubation, and percutaneous tracheostomy.

Examples include low- or high-flow nasal oxygen during efforts securing a tube.

See figs. 1 to 4 for examples of algorithms or cognitive aids.
Recommendations for Extubation of the Difficult Airway

- Have a preformulated strategy for extubation and subsequent airway management.
 - This strategy will depend, in part, on the surgery/procedure, other perioperative circumstances, the condition of the patient, and the skills and preferences of the clinician.
- Assess patient readiness for extubation.
- Ensure that a skilled individual is present to assist with extubation when feasible.
- Select an appropriate time and location for extubation when possible.
- Assess the relative clinical merits and feasibility of the short-term use of an airway exchange catheter and/or supraglottic airway that can serve as a guide for expedited reintubation.
 - Minimize the use of an airway exchange catheter with pediatric patients.
- Before attempting extubation, evaluate the risks and benefits of elective surgical tracheostomy.
- Evaluate the risks and benefits of awake extubation versus extubation before the return to consciousness.
- When feasible, use supplemental oxygen throughout the extubation process.
- Assess the clinical factors that may produce an adverse impact on ventilation after the patient has been extubated.

Recommendations for Follow up Care

- Use postextubation steroids and/or racemic epinephrine when appropriate.
- Inform the patient or a responsible person of the airway difficulty that was encountered to provide the patient (or responsible person) with a role in guiding and facilitating the delivery of future care.
 - The information conveyed may include (but is not limited to) the presence of a difficult airway, the apparent reasons for difficulty, how the intubation was accomplished, and the implications for future care.
- Document the presence and nature of the airway difficulty in the medical record to guide and facilitate the delivery of future care.
- Instruct the patient to register with an emergency notification service when appropriate and feasible.

Appendix 2: Methods and Analyses

For these updated guidelines, a systematic search and review of peer-reviewed published literature was conducted, with scientific findings summarized and reported below and in the document. Assessment of conceptual issues, practicality, and feasibility of the guideline recommendations were also evaluated, with opinion data collected from surveys and other sources. The systematic literature review is based on evidence linkages or statements regarding potential relationships between interventions and outcomes associated with difficult airway management. The evidence model below guided the search, providing inclusion and exclusion information regarding patients, procedures, practice settings, providers, clinical interventions, and outcomes. The opinion data were obtained from surveys based on proposed recommendations derived from the literature findings (see “Consensus-based evidence” below).

After review of all evidentiary information, the task force placed each recommendation into one of three categories: (1) provide the intervention or treatment, (2) provide the patient with the intervention or treatment based on the surgery/procedure, other perioperative circumstances, the condition of the patient, and the practitioner’s clinical judgment, or (3) do not provide the intervention or treatment. The policy of the ASA Committee on Standards and Practice Parameters is to update practice guidelines every 5 yr. The ASA Committee on Standards and Practice Parameters reviews all practice guidelines at the ASA annual meeting and determines update and revision timelines.

Evidence Model

Patients

- Inclusion criteria:
 - Patients with or at risk of difficult mask ventilation
 - Patients with or at risk of difficult laryngoscopy (direct or indirect)
 - Patients with or at risk of difficult ventilation using a supraglottic airway
 - Patients with or at risk of difficult/failed tracheal intubation
 - Patients with or at risk of difficult/failed extubation
 - Anticipated difficult airway patients
 - Unanticipated difficult airway patients
 - Adult patients
 - Pediatric patients including infants and neonates
 - Obstetric patients
 - ICU/critically ill patients
- Exclusion criteria
 - Patients where difficult airways are not encountered

These interventions are considered advanced techniques.

These include, but are not limited to hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure.
• Physiologically difficult airways that are not anatomically difficult††††††††

Procedures
• Inclusion criteria:
 ◦ Procedures requiring general anesthesia
 ◦ Procedures requiring sedation or regional anesthesia
 ◦ Elective/emergency airway management without a procedure
 ◦ Diagnostic procedures
 ◦ Elective procedures
 ◦ Emergency procedures
 ◦ Invasive airway access
• Exclusion criteria:
 ◦ Airway management during cardiopulmonary resuscitation

Practice Settings
• Inclusion criteria:
 ◦ In-hospital
 ▪ Perioperative care settings
 ▪ Nonoperating room anesthetic setting
 ▪ Emergency department setting
 ▪ ICU/critical care setting
 ▪ Ambulatory surgery centers
 ◦ Office-based procedure/anesthesia locations
 ◦ Out-of-hospital or prehospital (i.e., field) settings, included only if emergency invasive airway is performed
• Exclusion criteria:
 ◦ Out-of-hospital or prehospital (i.e., field) settings, excluded except for emergency invasive airway

Providers
• Inclusion criteria:
 ◦ Anesthesia care providers
• Exclusion criteria:
 ◦ Individuals who do not deliver anesthetic care and airway management

Interventions
• Evaluation of the airway
 ◦ Risk prediction (for difficult airway or aspiration) obtained from history/medical records
 ▪ Demographic conditions (e.g., age, sex)
 ▪ Clinical conditions (e.g., body mass index, previous difficult airway, diabetes, obesity)
 ▪ Diagnostic test findings (e.g., radiography, computed tomography, magnetic resonance imaging, bedside endoscopy, bedside ultrasound)
 ▪ Patient interview/questionnaires (e.g., MACOCHA, STOP-Bang)
 ◦ Airway assessment/exam (bedside and advanced) when a difficult airway is known or suspected
 ▪ Assessment of facial features (e.g., mouth opening, nose slope, neck slope, ratio of brow to nose to chin, full beard)
 ▪ Upper lip bite test
 ▪ Anatomical measurements and landmarks (e.g., Mallampati/modified Mallampati, neck circumference, neck mobility (neck radiation changes), prognathism, ruler or finger measurements of thyromental, sternomental, or temporomandibular distance)
• Exclusion criteria:
 ◦ Individuals who do not deliver anesthetic care and airway management
 ◦ Inclusion criteria:
 ◦ Procedures requiring general anesthesia
 ◦ Procedures requiring sedation or regional anesthesia
 ◦ Elective/emergency airway management without a procedure
 ◦ Diagnostic procedures
 ◦ Elective procedures
 ◦ Emergency procedures
 ◦ Invasive airway access
 ◦ Exclusion criteria:
 ◦ Airway management during cardiopulmonary resuscitation

Preparation for difficult airway management
• Availability of equipment for airway management (i.e., items for anesthetizing locations, portable storage unit, cart, or trolley for difficult airway management)
• Availability of an assigned individual to provide assistance when a difficult airway is encountered (from previous evidence model)
• Informing the patient with a known or suspected difficult airway
• Preoxygenation††††††††
 ◦ Preoxygenation versus room air
 ▪ 3 to 5 min of O2 (3 to 5 min at tidal volume, Fio2 = 1) versus 1 min (1 min at tidal volume, Fio2 = 1)
 ▪ 3 to 5 min of O2 (3 to 5 min at tidal volume, Fio2 = 1) versus 4 to 12 deep breaths at forced vital capacity in 1 min or the shortest time lag (Fio2 = 1)
 ▪ 3 min of preoxygenation to reach an end-tidal oxygen concentration of 0.90 of higher (EtO2 ≥ 0.9)
 ▪ Preoxygenation using noninvasive ventilation (pressure support with positive end expiratory pressure)
 ▪ Patient positioning (e.g., sniffing, sitting, head/neck extension, head-elevated laryngoscopy, ramped)
 ▪ Sedative versus hypnotic administration
 ▪ Local anesthesia versus no local anesthesia

††††††††††Methods to deliver preoxygenation include oxygen delivery with nasal cannulae, facemask (including humidified nasal cannula and continuous positive airway pressure), or supraglottic airway insufflation.

††††††††††Methods to deliver supplemental oxygen include oxygen delivery with nasal cannulae, facemask (including humidified nasal cannula and continuous positive airway pressure), or supraglottic airway insufflation.
Supplemental oxygen during airway management

Patient monitoring (according to ASA standards)

Anticipated difficult airway management.

Awake tracheal intubation (any device)

- Awake/sedated intubation versus intubation after induction
- Awake/sedated versus anesthetized intubation in patients with full stomach

Anesthetized tracheal intubation

- Rapid sequence induction/intubation

- With versus without cricoid pressure (Sellick maneuver)
- Pressure-limited mask ventilation versus spontaneous ventilation
- Maintenance of spontaneous ventilation versus ablation of spontaneous ventilation
- Administration of neuromuscular blockade to improve mask ventilation
- Rocuronium with sugammadex versus suxamethonium or succinylcholine

Both awake and anesthetized intubation

Airway management devices

- Rigid laryngoscopic blades of alternative design and size: with adequate face mask ventilation after induction (alternatives to standard blades such as Macintosh, Miller)
- Adjuncts – introducers, bougies, stylets, alternative tracheal tubes
- Video/video-assisted laryngoscopy
- Video/video-assisted laryngoscopy versus direct laryngoscopy
- Video/video-assisted laryngoscopy versus fiberoptic laryngoscopy
- Channel-guided versus non–channel-guided videolaryngoscopes
- Hyperangulated versus nonangulated devices
- Flexible intubation scopes
- Flexible intubation scopes versus blind tracheal or nasotracheal intubation
- Flexible intubation scopes versus rigid laryngoscopic intubation
- Supraglottic airway
- Supraglottic airway versus face mask for ventilation
- Intubation with versus without a supraglottic airway
- Intubating techniques with a supraglottic airway
- Laryngoscopic intubation with a supraglottic airway versus blind intubation with a supraglottic airway
- Flexible scope intubation with a supraglottic airway versus standard laryngoscopic intubation with a supraglottic airway
- Optically/image-guided intubation with a supraglottic airway versus standard laryngoscopic intubation with a supraglottic airway
- Second versus first generation supraglottic airway
- Lighted stylet, light wand, optical stylet
- Lighted stylet, light wand, or optical stylet versus blind intubation
- Lighted stylet, light wand, or optical stylet versus laryngoscopic intubation
- Rigid bronchoscope
- Intubation with versus without a supraglottic airway
- Intubating techniques with a supraglottic airway
- Laryngoscopic intubation with a supraglottic airway versus blind intubation with a supraglottic airway
- Flexible scope intubation with a supraglottic airway versus standard laryngoscopic intubation with a supraglottic airway
- Optically/image-guided intubation with a supraglottic airway versus standard laryngoscopic intubation with a supraglottic airway
- Additional airway management interventions (with anticipated failure of airway management devices)
 - Retrograde wire–guided intubation
 - Invasive airway
 - Cricothyrotomy (percutaneous)
 - Cricothyrotomy (surgical)
 - Tracheostomy/tracheotomy
 - Scalpel bougie technique or scalpel bougie tube technique versus needle cannula technique
 - Awake/sedated cricothyrotomy/tracheostomy for invasive airway
 - Combination techniques
 - Unanticipated and emergency (i.e., cannot oxygenate or ventilate) difficult airway management.
 - Call for help
 - Maximize oxygenation
 - Nasal oxygen during efforts securing a tube
 - Expiratory ventilation assistance
 - High-flow nasal cannula oxygen/transnasal humidified rapid insufflation ventilatory exchange
 - Use of a cognitive aid
 - Airway management devices
 - Rigid bronchoscope

Combination techniques include (1) direct laryngoscopy with supraglottic airway, bougie, optical stylet, flexible intubation scope, airway exchange catheter, or retrograde intubation; (2) videolaryngoscopes with supraglottic airway, bougie, optical stylet, flexible scope/fiberoptic scope, airway exchange catheter, or retrograde intubation; (3) flexible intubation scope with supraglottic airway, airway exchange catheter, retrograde intubation, or cricothyrotomy; (4) optical stylet with supraglottic airway, bougie, flexible scope intubation scope, or retrograde intubation; and (5) airway exchange catheter with supraglottic airway, retrograde intubation, or cricothyrotomy.

Channel-guided devices include Airtraq, Kingvision, and Pentax videolaryngoscopes. Non–channel-guided devices include Glidescope, C-MAC, and McGrath videolaryngoscopes.
Practice Guidelines for Difficult Airway Management

- Rigid laryngoscopic blades of alternative design and size: with adequate face mask ventilation after induction (alternatives to standard blades such as Macintosh, Miller)
 - Lighted stylet, lightwand, optical stylet
 - Lighted stylet, lightwand, or optical stylet versus blind intubation
- Flexible intubation scopes
 - Flexible scope intubation versus blind tracheal or nasotracheal intubation
- Video/video-assisted laryngoscopy
- Video/video-assisted laryngoscopy versus direct laryngoscopy
- Flexible intubation scopes
 - Flexible scope intubation versus rigid laryngoscopic intubation
- Optical laryngoscopes
 - Adjuncts – introducers, bougies, stylets, alternative tracheal tubes
- Supraglottic airway
 - Supraglottic airway versus face mask for ventilation
- Intubation with versus without a supraglottic airway
- Intubating techniques with a supraglottic airway
 - Laryngoscopic intubation with a supraglottic airway versus blind intubation with a supraglottic airway
 - Flexible scope intubation with a supraglottic airway versus standard laryngoscopic intubation with a supraglottic airway
- Optimally/image-guided intubation with a supraglottic airway versus standard laryngoscopic intubation with a supraglottic airway
- Second-generation supraglottic airway
 - Additional airway management interventions (with anticipated failure of airway management devices)
 - Retrograde wire-guided intubation
 - Emergency invasive airway
- Cricothyrotomy (percutaneous)
- Cricothyrotomy (surgical)
- Tracheostomy/tracheotomy
- Scalpel bougie technique or scalpel bougie tube technique versus needle cannula technique
- Awake/sedated cricothyrotomy/tracheotomy for emergency invasive airway
- ECMO
- Jet ventilation
- Combination techniques
- Confirmation of successful intubation
 - Pulse oximetry (for oxygen saturation levels/desaturation/hypoxemia/hypoxia)
 - Capnography for carbon dioxide levels/hypercarbia/hypercapnia
 - Capnography versus capnometry
 - Capnography versus colorimetry
 - Visualization (any technique)
 - Flexible bronchoscopy
 - Ultrasound
- Radiography
- Exubation
 - Assess readiness for extubation
 - Presence of a skilled individual to assist
 - Selection of ideal time and location
 - Plan for possible reintubation
 - Elective tracheostomy
 - Awake extubation or supraglottic airway removal
 - Awake tracheal tube extubation versus asleep (anesthetized) extubation
 - Awake supraglottic airway removal versus anesthetized supraglottic airway removal
 - Apnea versus spontaneous ventilation during extubation
 - Supplemental oxygen throughout extubation (e.g., by mask, blow-by, nasal cannula, continuous positive airway pressure, bilevel positive airway pressure, or high-flow nasal cannula)
 - Supplemental oxygen after extubation
 - Staged extubation
 - Airway exchange catheter
 - Supraglottic airway exchange catheter (Bailey maneuver)
 - Follow-up care
 - Postextubation steroids
 - Postextubation epinephrine
 - Postextubation counseling (i.e., informing and advising the patient or responsible patient of the occurrence and potential complications associated with a difficult airway)
 - Documentation of difficult airway and management in the medical record and to the patient
 - Registration with an emergency notification service
 - Human factors
- Excluded Interventions
 - Interventions not addressing any aspect of airway and anesthetic management
 - Lung separation
 - Double lumen tube

Copyright © 2021, the American Society of Anesthesiologists. All Rights Reserved. Unauthorized reproduction of this article is prohibited.
Bronchial blocker
Physiologically difficult airway
Details of awake intubation techniques
Submental intubation
Cardiopulmonary bypass
Effects of anesthetics/sedatives on ease of intubation/supraglottic airway insertion (e.g., propofol)
Details of ECMO

Outcomes
Inclusion criteria:
Identification of patient characteristics at risk of difficult intubation
Identification of patient characteristics leading to awake intubation
Intubation/ventilation success/failure:
Face/bag mask ventilation (success/failure, easy/difficult)
 supraglottic airway placement (success/failure, number of attempts)
Laryngoscopy (success/failure, number of attempts)
Tracheal intubation (success/failure, number of attempts)
Invasive airway
Percutaneous cricothyrotomy (success/failure)
Surgical cricothyrotomy (success/failure)
Tracheostomy (success/failure)
Scalpel bougie technique or scalpel bougie tube technique versus needle catheter technique (success/failure)
Restoration of failed oxygenation (success/failure)
Esophageal intubation
 Barotrauma (pneumothorax, pneumomediastinum)
Subcutaneous emphysema
 Gastric rupture
 Tracheal rupture
 Delayed tracheal stenosis
Physiologic outcomes (measurement of physiologic functioning)
Oxygenation/desaturation
Carbon dioxide levels
 Hemodynamic levels (e.g., mean arterial pressure, central venous pressure)
Clinical outcomes
Hypoxemia/hypoxia
 Hypercapnia/hypercarbia
Hemodynamic instability
Aspiration
Airway injury/trauma
Soft tissue injuries/blind spot injuries
Sore throat
Palatal injury
Oral/dental damage
Cardiac events (e.g., cardiac arrest)
Neurologic injury
 Unplanned tracheotomy/surgical airway
 Neurologic deficit of less than 72 h
Permanent (long-term) outcomes
Death
Respiratory system damage
Airway trauma
Pneumothorax
Aspiration
Nerve/brain damage
Nerve damage
 Neurologic/memory deficit
Permanent brain damage
Brain injury (anoxic encephalopathy)
 Cardiovascular damage
 Cardiopulmonary arrest
 Fetal/newborn damage
Functional deficit
Awareness/fright
 Loss of employment
Nonclinical outcomes
 Unplanned ICU admission
 Unplanned hospital admission
 Surgery postponed/cancelled
 Length of hospital stay
 Patient satisfaction
Exclusion criteria:
No exclusion criteria

Evidence Collection
Literature inclusion criteria:
Randomized controlled trials
Prospective nonrandomized comparative studies (e.g., quasiexperimental, cohort)
Retrospective comparative studies (e.g., case control)
Observational studies (e.g., correlational or descriptive statistics)
Case reports, case series
Literature exclusion criteria (except to obtain new citations):
Editorials
Literature reviews
Meta-analyses conducted by others
 Unpublished studies
Studies in non–peer-reviewed journals
Newspaper articles
Survey evidence:
 Expert consultant survey
 ASA membership survey
Membership surveys of other participating organizations
Reliability survey
Feasibility survey

State of the Literature
For the systematic review, potentially relevant clinical studies were identified via electronic and manual searches. Bibliographic database searches included PubMed and EMBASE. The searches covered a 9.25-yr period from January 1, 2012, through March 31, 2021. Citation searching (backward and forward) of relevant meta-analyses and other systematic reviews was also performed. No search for gray literature was conducted. Publications identified by task force members were also considered. Accepted studies from the previous guidelines were re-reviewed, covering the period of January 1, 2002, through June 31, 2012. Only studies containing original findings from peer-reviewed journals were accepted. Editorials, letters, and other articles without data were excluded. A literature search strategy and PRISMA* flow diagram are available as Supplemental Digital Content 2, http://links.lww.com/ALN/C695. In total, 12,544 unique new citations were identified, with 1,026 full articles assessed for eligibility. After review, 619 were excluded, with 407 new studies meeting inclusion criteria. These studies were combined with 190 pre-2012 articles from the previous guidelines, resulting in a total of 597 articles accepted as evidence for these guidelines. In this document, 559 are referenced, with a complete bibliography of articles used to develop these guidelines, organized by section, available as Supplemental Digital Content 3, http://links.lww.com/ALN/C696.

Each pertinent outcome reported in a study was classified by evidence category and level and designated as beneficial, harmful, or equivocal. Findings were then summarized for each evidence linkage and reported in the text of the updated guidelines.

Evidence categories refer specifically to the strength and quality of the research design of the studies. Category A evidence represents results obtained from randomized controlled trials, and category B evidence represents observational results obtained from nonrandomized study designs or randomized trials without pertinent comparison groups. When available, category A evidence is given precedence over category B evidence for any particular outcome. These evidence categories are further divided into evidence levels. Evidence levels refer specifically to the strength and quality of the summarized study findings (i.e., statistical findings, type of data, and the number of studies reporting replicating the findings). In this document, the highest level of evidence is included in the summary report for each intervention—outcome pair, including a designation of benefit, harm, or equivocality.

Category A
Randomized controlled trials report comparative findings between clinical interventions for specified outcomes. Statistically significant \((P < 0.01)\) outcomes are designated as either beneficial (B) or harmful (H) for the patient; statistically nonsignificant findings are designated as equivocal (E).

Level 1
The literature contains a sufficient number of randomized controlled trials to conduct meta-analysis,********** and meta-analytic findings from these aggregated studies are reported as evidence.

Level 2
The literature contains multiple randomized controlled trials, but the number of randomized controlled trials is not sufficient to conduct a viable meta-analysis for the purpose of these guidelines. Findings from these randomized controlled trials are reported separately as evidence.

Level 3
The literature contains a single randomized controlled trial, and findings from this study are reported as evidence.

Category B
Observational studies or randomized controlled trials without pertinent comparison groups may permit inference of beneficial or harmful relationships among clinical interventions and clinical outcomes. Inferred findings are given a directional designation of beneficial (B), harmful (H), or equivocal (E). For studies that report statistical findings, the threshold for significance is \(P < 0.01\).

Level 1
The literature contains nonrandomized comparisons (e.g., quasieperimental, cohort [prospective or retrospective], or case-control research designs) with comparative statistics between clinical interventions for a specified clinical outcome.

Level 2
The literature contains noncomparative observational studies with associative statistics (e.g., correlation, sensitivity, and specificity).

Level 3
The literature contains noncomparative observational studies with descriptive statistics (e.g., frequencies, percentages).

Level 4
The literature contains case reports.

********** A minimum of five independent randomized controlled trials (i.e., sufficient for fitting a random-effects model) is required for meta-analysis.\(^{360}\)
Insufficient Literature

The lack of sufficient scientific evidence in the literature may occur when the evidence is either unavailable (i.e., no pertinent studies found) or inadequate. Inadequate literature cannot be used to assess relationships among clinical interventions and outcomes, either, because a clear interpretation of findings is not obtained due to methodologic concerns (e.g., confounding of study design or implementation) or the study does not meet the criteria for content as defined in the “focus” of the guidelines.

Literature addressing risk prediction reported sensitivity, specificity, positive and negative predictive, and other common values for age, sex, body mass index, weight, height, and history of snoring. Values for airway assessment were reported for facial and jaw features, anatomical landmarks, and measurements.

Literature relating to videolaryngoscopes contained enough studies with well defined experimental designs and statistical information to conduct formal meta-analyses (table 4). Outcomes assessed were (1) laryngoscopic view, (2) intubation success, (3) first attempt intubation success, (4) assist maneuvers used for intubation, and (5) time to intubation. For meta-analyses of studies reporting frequency of events, event rates and odds ratios were pooled. Time to intubation was pooled using mean differences (continuous outcomes) for clinical relevance. Fixed-effects models were fitted using Mantel–Haenszel or inverse variance weighting using the DerSimonian and Laird estimate of between-study variance. Sensitivity and specificity, positive and negative predictive, and other common values for age, sex, body mass index, weight, height, and history of snoring. Values for airway assessment were reported for facial and jaw features, anatomical landmarks, and measurements.

Consensus-based Evidence

Validation of the concepts addressed by these guidelines and subsequent recommendations proposed was obtained by consensus from multiple sources, including (1) survey opinion from expert consultants who were selected based on their knowledge or expertise in difficult airway management; (2) survey opinions from randomly selected samples of active members of the ASA and participating organizations; and (3) internet commentary. All opinion-based evidence relevant to each topic was considered in the development of these guidelines. However, only findings obtained from formal surveys are reported in the document. Opinion surveys were developed by the task force to address each clinical intervention identified in the document. Identical surveys were distributed to expert consultants, a random sample of ASA members, and members of the participating organizations.

Survey responses were recorded using a five-point scale and summarized based on median values††††††††††:

Strongly agree: Median score of 5 (at least 50% of the responses are 5)
Agree: Median score of 4 (at least 50% of the responses are 4 or 4 and 5)
Equivocal: Median score of 3 (at least 50% of the responses are 3, or no other response category or combination of similar categories contains at least 50% of the responses)
Disagree: Median score of 2 (at least 50% of responses are 2 or 1 and 2)
Strongly disagree: Median score of 1 (at least 50% of responses are 1)

For consultant respondents, the rate of return for the survey addressing guideline recommendations was 82% (n = 174 of 212), and the results are presented in table 5. For membership respondents, the survey totals were as follows: American Society of Anesthesiologists (ASA) = 220; All India Difficult Airway Association (AIDAA) = 74; European Airway Management Society (EAMS) = 79; Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI) = 177; Learning, Teaching and Investigation Difficult Airway Group (FIDIVA) = 24; Society for Ambulatory Anesthesia (SAMBA) = 47; Society for Airway Management (SAM) = 70; Society for Head and Neck Anesthesia (SHANA) = 27; Society for Pediatric Anesthesia (SPA) = 268; Society of Critical Care Anesthesiologists (SOCCA) = 85; and Trauma Anesthesiology Society (TAS) = 21. Survey results for each organization are presented as Supplemental Digital Content 5, http://links.lww.com/ALN/C698.

An additional survey was sent to the consultants accompanied by a draft of the guidelines asking them
to indicate which, if any, of the recommendations would change their clinical practices if the guidelines were instituted. The rate of return was 31% (n = 68 of 218). The percentage of responding consultants expecting no change associated with each linkage were as follows: (1) evaluation of the airway = 82%, (2) availability of airway management equipment = 79%, (3) the presence of a skilled individual to assist = 82%, (4) supplemental oxygen delivery = 76%, strategy for management of an anticipated difficult airway = 88%, awake intubation strategy = 81%, selection of an elective invasive airway = 84%, preferred sequence of devices for attempting intubation = 93%, strategy for management of an unanticipated difficult airway = 88%, strategy for management of an emergency difficult airway = 87%, use of an algorithm, cognitive aid, or infographic = 65%, use of capnography for confirmation of intubation = 90%, strategy for invasive management of a difficult airway = 82%, supplemental oxygen delivery for extubation = 87%, and documentation of the encountered difficult airway = 81%. Of all the respondents, 91% indicated that the guidelines would have no effect on the amount of time spent on a typical case, 7% indicated that there would be an increase of the amount of time spent on a typical case, and 1% indicated a decrease in time with the implementation of these guidelines; 72% indicated that new equipment, supplies, or training would not be needed to implement the guidelines; and 86% indicated that implementation of the guidelines would not require changes in practice that would affect costs.

Research Support

Support was provided solely by the American Society of Anesthesiologists (Schaumburg, Illinois).

Competing Interests

Dr. Apfelbaum was supported by a salary paid in part through National Institutes of Health (Bethesda, Maryland) grant No. ROHG009938-01A1. Dr. Hagberg received research grant support from Ambu (Copenhagen, Denmark), Karl Storz Endoscopy (Tuttlingen, Germany), and Vyaire Medical Inc. (Mettawa, Illinois); received honoraria/royalties from UpToDate and Elsevier (Amsterdam, The Netherlands); and is a Helen Shafer Fly Distinguished Professor. Dr. Connis is a paid consultant for the American Society of Anesthesiologists (Schaumburg, Illinois). Dr. Abdelmalak is a past president of the Society for Ambulatory Anesthesia (Milwaukee, Wisconsin), the Society for Head and Neck Anesthesia, and the Ohio Society of Anesthesiologists (Columbus, Ohio); is a board of directors member of the ASA; received consultant fees from the Acacia Pharma (Indianapolis, Indiana) advisory board and from Medtronic (Minneapolis, Minnesota); and received royalties from Cambridge University Press (London, United Kingdom). Dr. Dutton holds equity in U.S. Anesthesia Partners (Dallas, Texas) and serves on the ex-officio board of directors of the Trauma Anesthesiology Society (Houston, Texas). Dr. Fadjoie received a grant from the Anesthesia Patient Safety Foundation (Rochester, Minnesota); serves on the board of directors of the Society for Pediatric Anesthesia (Richmond, Virginia) and as the director of the American Board of Anesthesiology (Raleigh, North Carolina); provides expert witness testimony for the University of Michigan (Ann Arbor, Michigan); and received honoraria from Penn State Health (Hershey, Pennsylvania), Atrium Health (Charlotte, North Carolina), the Missouri Society of Anesthesiologists (Jefferson City, Missouri), the American Board of Anesthesiologists, and Stanford University (Palo Alto, California). Dr. Greif received a 2018 Karl Storz Research Grant (Tuttlingen, Germany); is a past president of the European Airway Management Society (Bern, Switzerland); and serves as the board director of education and training for the European Resuscitation Council (Niel, Belgium). Dr. Mercier received material support from Teleflex (Athlone, Ireland) and Karl Storz Endoscopy (Tuttlingen, Germany); serves on the ASA House of Delegates and Committee on Standards and Practice Parameters; and is the chairman of the Committee on Long Range Planning and a former president of the Texas Society of Anesthesiologists. Dr. Myatra is president of the All India Difficult Airway Society (Karnataka, India). Dr. O’Sullivan is a council member and trustee of the Royal College of Anaesthetists (London, United Kingdom). Dr. Rosenblatt received honoraria from Medtronics (Dublin, Ireland) and is owner of Airway On Demand Limited Liability Corporation (Hamden, Connecticut), and is a consultant for Ambu (Copenhagen, Denmark). Dr. Sorbello is a paid consultant for Teleflex Medical (Athlone, Ireland), Deas Italia (Castelbolognese, Italy), and Merck Sharp and Dohme (Rome, Italy). Dr. Tung is employed as a section editor for Anesthesia & Analgesia (International Anesthesia Research Society, San Francisco, California). The other authors declare no competing interests.

Correspondence

Address correspondence to the American Society of Anesthesiologists: 1061 American Lane, Schaumburg, Illinois 60173. jeffa@dacc.uchicago.edu. This Practice Guideline, as well as all published ASA Practice Parameters, may be obtained at no cost through the Journal Web site, https://pubs.asahq.org/anesthesiology.
Table 1. Airway Management Items for Anesthetizing Locations

<table>
<thead>
<tr>
<th>Category</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-inflating resuscitation bag</td>
<td></td>
</tr>
<tr>
<td>Suction tubing, Yankauers, suction catheters, and appropriate connectors</td>
<td></td>
</tr>
<tr>
<td>Various sizes of face masks</td>
<td></td>
</tr>
<tr>
<td>Various sizes of oral and nasal airways</td>
<td></td>
</tr>
<tr>
<td>Various sizes and types of laryngoscope blades and handles</td>
<td></td>
</tr>
<tr>
<td>Various sizes and types of tracheal tubes</td>
<td></td>
</tr>
<tr>
<td>Tracheal tube introducer (bougie) for adult patients</td>
<td></td>
</tr>
<tr>
<td>Tracheal tube stylets (malleable and rigid)</td>
<td></td>
</tr>
<tr>
<td>Equipment for emergency invasive airway management</td>
<td></td>
</tr>
<tr>
<td>Various sizes of supraglottic airways</td>
<td></td>
</tr>
<tr>
<td>Water-soluble medical lubricant</td>
<td></td>
</tr>
<tr>
<td>Nasal cannula and oxygen face masks</td>
<td></td>
</tr>
<tr>
<td>Various sizes and types of tracheal tubes</td>
<td></td>
</tr>
<tr>
<td>Various sizes and types of laryngoscope blades and handles</td>
<td></td>
</tr>
<tr>
<td>Various sizes and types of tracheal tubes</td>
<td></td>
</tr>
<tr>
<td>Various sizes of face masks</td>
<td></td>
</tr>
<tr>
<td>Various sizes of oral and nasal airways</td>
<td></td>
</tr>
<tr>
<td>Various sizes and types of laryngoscope blades and handles</td>
<td></td>
</tr>
<tr>
<td>Various sizes and types of tracheal tubes</td>
<td></td>
</tr>
<tr>
<td>Tracheal tube introducer (bougie) for adult patients</td>
<td></td>
</tr>
<tr>
<td>Tracheal tube stylets (malleable and rigid)</td>
<td></td>
</tr>
<tr>
<td>Equipment for emergency invasive airway management</td>
<td></td>
</tr>
<tr>
<td>Various sizes of supraglottic airways</td>
<td></td>
</tr>
<tr>
<td>Water-soluble medical lubricant</td>
<td></td>
</tr>
<tr>
<td>Nasal cannula and oxygen face masks</td>
<td></td>
</tr>
<tr>
<td>Various sizes of tracheal tubes</td>
<td></td>
</tr>
</tbody>
</table>

The examples listed in this table represent basic minimum contents for an anesthetizing location cart or trolley. The cart may be customized to meet the specific needs, preferences, and skills of the practitioner and healthcare facility.

ASA, American Society of Anesthesiologists.

Table 2. Portable Storage Unit Items for Difficult Airway Management

<table>
<thead>
<tr>
<th>Category*</th>
<th>Item†‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative/rescue ventilation equipment</td>
<td>Oral and nasal airways of assorted sizes</td>
</tr>
<tr>
<td></td>
<td>Supraglottic airways of assorted sizes/cuffed pharyngeal sealer</td>
</tr>
<tr>
<td></td>
<td>Nasal cannula</td>
</tr>
<tr>
<td>Alternative intubation equipment</td>
<td>Tracheal tubes of assorted sizes (including microtracheal tubes)</td>
</tr>
<tr>
<td></td>
<td>Rigid blades of alternate design and size for intubation</td>
</tr>
<tr>
<td></td>
<td>Tracheal tube guides. Examples include (but are not limited to) semirigid stylets, lighted stylets, forceps designed to manipulate the distal portion of the tracheal tube</td>
</tr>
<tr>
<td></td>
<td>Intubating supraglottic airway</td>
</tr>
<tr>
<td></td>
<td>Videolaryngoscope with appropriate stylet</td>
</tr>
<tr>
<td></td>
<td>Optical laryngoscope</td>
</tr>
<tr>
<td></td>
<td>Intubating video stylet</td>
</tr>
<tr>
<td></td>
<td>Flexible intubating bronchoscope along with topical anesthetic and equipment, and airway/bite block</td>
</tr>
<tr>
<td></td>
<td>Airway exchange catheters of assorted sizes</td>
</tr>
<tr>
<td></td>
<td>Multiple exhaled carbon dioxide detectors</td>
</tr>
<tr>
<td></td>
<td>A laminated version of a local accepted difficult airway algorithm/cognitive aid/checklist</td>
</tr>
<tr>
<td></td>
<td>Defogger</td>
</tr>
</tbody>
</table>

The examples listed in this table represent airway management equipment beyond what may be available in the anesthetizing location (see Table 1). In areas where these items are not available at the anesthetizing location, add them to this portable storage unit.

* Equipment and supplies sizes should match the intended population to be served (e.g., neonates, pediatrics, adults).
† The items listed in this table represent suggestions. The contents of the portable storage unit should be customized to meet the specific needs, preferences, and skills of the practitioner and healthcare facility.
‡ Choice of some items (e.g., videolaryngoscope, jet ventilation equipment) may depend on practitioner familiarity and experience with the device.
Table 3. Human Factors Relevant to Difficult Airway Management

<table>
<thead>
<tr>
<th>Practitioner factors</th>
<th>Before</th>
<th>During</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practitioner knowledge and training</td>
<td>Possible alternate outcomes (plan B)</td>
<td>Preoperative assessment</td>
<td>Complacency</td>
</tr>
<tr>
<td>Internal and external stressors (fatigue, illness, production pressure)</td>
<td>Decision-making (perseveration, judgment, situational awareness, interpretation of data)</td>
<td>Team dynamics (leadership, role assignment, empowerment, sterile cockpit)</td>
<td>Calling for assistance</td>
</tr>
<tr>
<td>Strategic debriefing</td>
<td>Internal and external stressors (fatigue, illness, production pressure)</td>
<td>Decision-making (perseveration, judgment, situational awareness, interpretation of data)</td>
<td>Team dynamics (leadership, role assignment, empowerment, sterile cockpit)</td>
</tr>
</tbody>
</table>

External factors

Patient factors
- Anatomical/physiological airway difficulty risk
- Aspiration risk
- Infection risk
- Exposure risk
- Urgency
- Comorbidities

Environment factors
- Airway equipment
- Monitoring
- Personal protective equipment

Institutional factors
- Culture, staffing, shift duration
- Protocols, reporting
- Supervision/support, training

This table lists aspects of airway management that address how the practitioner may interact with patients, other clinicians, assistants, equipment, or the environment during the process of airway management. Practitioners may consider these factors before, during, and/or after the course of airway management. Factors are classified as related directly to or external to the practitioner.

Table 4. Meta-analysis Summary: Videolaryngoscopy versus Direct Laryngoscopy*

<table>
<thead>
<tr>
<th>Effect</th>
<th>Fixed</th>
<th>Random</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laryngoscopic view</td>
<td>0.123 (0.078, 0.194)</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Successful intubation</td>
<td>0.181 (0.097, 0.339)</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>First attempt success</td>
<td>0.327 (0.161, 0.666)</td>
<td>< 0.001</td>
<td>0.357 (0.170, 0.749)</td>
</tr>
<tr>
<td>Additional maneuvers</td>
<td>0.379 (0.250, 0.574)</td>
<td>< 0.001</td>
<td>0.311 (0.149, 0.650)</td>
</tr>
</tbody>
</table>

Mean Difference (99% CI)

| Intubation time | −0.158 (−0.347, 0.030) | 0.031 | −0.036 (−0.652, 0.580) | 0.880 | 90.12% | < 0.001 |

*Statistics for individual studies and forest plots are available as Supplemental Digital Content 4, http://links.lww.com/ALN/C697. †Number of studies included in the meta-analysis.
‡Continuity correction of 0.5 for zero cell frequencies.
Table 5. Expert Consultant Survey Results (Response Rate = 82%)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree (%)</th>
<th>Agree (%)</th>
<th>Neutral (%)</th>
<th>Disagree (%)</th>
<th>Strongly Disagree (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of the airway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Before the initiation of anesthetic care or airway management, ensure that an airway risk assessment is performed by the person(s) responsible for airway management whenever feasible to identify patient, medical, surgical, environmental, and anesthetic factors (e.g., risk of aspiration) that may indicate the potential for a difficult airway.</td>
<td>174</td>
<td>92*</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1b. Before the initiation of anesthetic care or airway management, conduct an airway physical examination.</td>
<td>174</td>
<td>84*</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Preparation for Difficult Airway Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. If a difficult airway is known or suspected, ensure that a skilled individual is present or immediately available to assist with airway management.</td>
<td>174</td>
<td>94*</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2b. If a difficult airway is known or suspected, inform the patient or responsible person of the special risks and procedures pertaining to management of the difficult airway.</td>
<td>174</td>
<td>74*</td>
<td>21</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2c. If a difficult airway is known or suspected, administer oxygen before initiating management of the difficult airway and deliver supplemental oxygen throughout the process of difficult airway management, including extubation.</td>
<td>173</td>
<td>83*</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anticipated Difficult Airway Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Identify a strategy for (1) awake intubation, (2) the patient who can be adequately ventilated but is difficult to intubate, (3) the patient who cannot be ventilated or intubated, and (4) alternative approaches to airway management failure.</td>
<td>164</td>
<td>84*</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4a. When appropriate, perform awake intubation if the patient is suspected to be a difficult intubation and difficult ventilation (face mask/supraglottic airway) is anticipated.</td>
<td>165</td>
<td>68*</td>
<td>22</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4b. When appropriate, perform awake intubation if the patient is suspected to be a difficult intubation and increased risk of aspiration is anticipated.</td>
<td>165</td>
<td>42</td>
<td>30*</td>
<td>15</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>4c. When appropriate, perform awake intubation if the patient is suspected to be a difficult intubation and anticipated to be incapable of tolerating a brief apneic episode.</td>
<td>166</td>
<td>44</td>
<td>34*</td>
<td>14</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4d. When appropriate, perform awake intubation if the patient is suspected to be a difficult intubation and difficulty with emergency invasive airway rescue is anticipated.</td>
<td>166</td>
<td>58*</td>
<td>25</td>
<td>11</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5. If a noninvasive approach is selected, identify a preferred sequence of noninvasive devices to use for airway management.</td>
<td>166</td>
<td>63*</td>
<td>29</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5a. If difficulty is encountered with individual techniques, combination techniques may be performed.</td>
<td>167</td>
<td>66*</td>
<td>28</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5b. Be aware of the passage of time, the number of attempts, and oxygen saturation.</td>
<td>166</td>
<td>91*</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5c. Provide and test mask ventilation between attempts.</td>
<td>167</td>
<td>58*</td>
<td>23</td>
<td>13</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5d. Limit the number of attempts at tracheal intubation or supraglottic airway placement to avoid potential injury and complications.</td>
<td>167</td>
<td>77*</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6. If an elective invasive approach to the airway (e.g., surgical cricothyotomy, tracheostomy, or large-bore cannula cricothyrotomy) is selected, identify a preferred intervention.</td>
<td>165</td>
<td>72*</td>
<td>21</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6a. Ensure that an invasive airway is performed by an individual trained in invasive airway techniques, whenever possible.</td>
<td>166</td>
<td>83*</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6b. If the selected invasive approach fails or is not feasible, identify an alternative invasive intervention.</td>
<td>166</td>
<td>72*</td>
<td>22</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unanticipated and Emergency Difficult Airway Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a. Upon encountering an unanticipated difficult airway, determine the benefit of waking and/or restoring spontaneous breathing.</td>
<td>164</td>
<td>64*</td>
<td>23</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7b. Upon encountering an unanticipated difficult airway, determine the benefit of a noninvasive versus invasive approach to airway management.</td>
<td>161</td>
<td>62*</td>
<td>30</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8. If a noninvasive approach is selected, identify a preferred sequence of noninvasive devices to use for airway management.</td>
<td>164</td>
<td>73*</td>
<td>24</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8a. If difficulty is encountered with individual techniques, combination techniques may be performed.</td>
<td>163</td>
<td>66*</td>
<td>26</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8b. Be aware of the passage of time, the number of attempts, and oxygen saturation.</td>
<td>162</td>
<td>88*</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8c. Provide and test mask ventilation between attempts.</td>
<td>159</td>
<td>59*</td>
<td>25</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8d. Limit the number of attempts at tracheal intubation or supraglottic airway placement to avoid potential injury and complications.</td>
<td>163</td>
<td>83*</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9. If an invasive approach to the airway (e.g., surgical cricothyotomy, tracheostomy, or large-bore cannula cricothyrotomy) is necessary (i.e., cannot intubate, cannot ventilate), identify a preferred intervention.</td>
<td>161</td>
<td>76*</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9a. Ensure that an invasive airway is performed by an individual trained in invasive airway techniques, whenever possible.</td>
<td>163</td>
<td>83*</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9b. Ensure that an invasive airway is performed as rapidly as possible.</td>
<td>163</td>
<td>67*</td>
<td>23</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9c. If the selected invasive approach fails or is not feasible, identify an alternative invasive intervention.</td>
<td>163</td>
<td>74*</td>
<td>20</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree (%)</th>
<th>Agree (%)</th>
<th>Neutral (%)</th>
<th>Disagree (%)</th>
<th>Strongly Disagree (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmation of tracheal intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Confirm tracheal intubation using capnography or end-tidal carbon dioxide monitoring.</td>
<td>164</td>
<td>91*</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11. When uncertain about the location of the tracheal tube, determine whether to either remove it and attempt ventilation or use additional techniques to confirm positioning of tracheal tube.</td>
<td>163</td>
<td>60*</td>
<td>28</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Extubation of the difficult airway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Have a preformulated strategy for extubation and subsequent airway management.</td>
<td>163</td>
<td>91*</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13. Ensure that a skilled individual is present to assist with extubation.</td>
<td>162</td>
<td>72*</td>
<td>23</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14. Select an appropriate time and location for extubation when possible.</td>
<td>163</td>
<td>77*</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15. Assess the relative clinical merits and feasibility of the short-term use of an airway exchange catheter and/or supraglottic airway that can serve as a guide for expedited reintubation.</td>
<td>163</td>
<td>64*</td>
<td>29</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16. Before attempting extubation, evaluate the risks and benefits of elective surgical tracheostomy.</td>
<td>163</td>
<td>47</td>
<td>33*</td>
<td>18</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>17. Evaluate the risks and benefits of awake extubation versus extubation before the return to consciousness.</td>
<td>163</td>
<td>57*</td>
<td>23</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>18. Assess the clinical factors that may produce an adverse impact on ventilation after the patient has been extubated.</td>
<td>162</td>
<td>75*</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Follow-up care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Inform the patient (or responsible person) of the airway difficulty that was encountered to provide the patient (or responsible person) with a role in guiding and facilitating the delivery of future care.</td>
<td>162</td>
<td>88*</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20. Document the presence and nature of the airway difficulty in the medical record to guide and facilitate the delivery of future care.</td>
<td>163</td>
<td>94*</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*An asterisk beside a percentage score indicates the median.
ASA DIFFICULT AIRWAY ALGORITHM: ADULT PATIENTS

Pre-intubation: Before attempting intubation, choose between either an awake or post-induction airway strategy. Choice of strategy and technique should be based on the clinician managing the airway.
1. Suspected difficult laryngoscopy?
 - Yes
 - Suspected difficult ventilation with face mask-supraglottic airway?
 - No
 - Significant increased risk of aspiration?
 - No
 - Increased risk of rapid desaturation?
 - Yes
 - Suspected difficult emergency invasive airway
 - No
 - Proceed with intubation attempt
 - Always evaluate for emergency invasive airway

 - No
 - Proceed with intubation attempt

2. Low- or high-flow nasal cannula, head elevated position throughout procedure. Noninvasive ventilation during preoxygenation.
3. Awake intubation techniques include flexible bronchoscope, videolaryngoscopy, direct laryngoscopy, combined techniques, and retrograde wire-aided intubation.
4. Other options include, but are not limited to, alternative awake technique, awake elective invasive airway, alternative anesthetic techniques, induction of anesthesia (if unstable or cannot be postponed) with preparations for emergency invasive airway, and postponing the case without attempting the above options.
5. Invasive airway techniques include surgical cricothyrotomy, needle cricothyrotomy with a pressure-regulated device, large-bore cannula cricothyrotomy, or surgical tracheostomy. Elective invasive airway techniques include the above and retrograde wire-guided intubation and percutaneous tracheostomy. Also consider rigid bronchoscopy and ECMO.
6. Consideration of size, design, positioning, and first versus second generation supraglottic airways may improve the ability to ventilate.
7. Alternative difficult intubation approaches include but are not limited to video-assisted laryngoscopy, alternative laryngoscope blades, combined techniques, intubating supraglottic airway (with or without flexible bronchoscopic guidance), flexible bronchoscopy, introducer, and lighted stylet or lightwand. Adjuncts that may be employed during intubation attempts include tracheal tube introducers, rigid styliets, intubating styliets, or tube changers and external laryngeal manipulation.
8. Includes postponing the case or postponing the intubation and returning with appropriate resources (e.g., personnel, equipment, patient preparation, awake intubation).
9. Other options include, but are not limited to, proceeding with procedure utilizing face mask or supraglottic airway ventilation. Pursuit of these options usually implies that ventilation will not be problematic.

Fig. 1. Difficult airway algorithm: Adult patients. The airway manager’s choice of airway strategy and techniques should be based on their previous experience; available resources, including equipment, availability and competency of help; and the context in which airway management will occur. Low- or high-flow nasal cannula, head elevated position throughout procedure. Noninvasive ventilation during preoxygenation. Awake intubation techniques include flexible bronchoscope, videolaryngoscopy, direct laryngoscopy, combined techniques, and retrograde wire-aided intubation. Other options include, but are not limited to, alternative awake technique, awake elective invasive airway, alternative anesthetic techniques, induction of anesthesia (if unstable or cannot be postponed) with preparations for emergency invasive airway, and postponing the case without attempting the above options. Invasive airway techniques include surgical cricothyrotomy, needle cricothyrotomy with a pressure-regulated device, large-bore cannula cricothyrotomy, or surgical tracheostomy. Elective invasive airway techniques include the above and retrograde wire-guided intubation and percutaneous tracheostomy. Also consider rigid bronchoscopy and ECMO. Consideration of size, design, positioning, and first versus second generation supraglottic airways may improve the ability to ventilate. Alternative difficult intubation approaches include but are not limited to video-assisted laryngoscopy, alternative laryngoscope blades, combined techniques, intubating supraglottic airway (with or without flexible bronchoscopic guidance), flexible bronchoscopy, introducer, and lighted stylet or lightwand. Adjuncts that may be employed during intubation attempts include tracheal tube introducers, rigid styliets, intubating styliets, or tube changers and external laryngeal manipulation. Includes postponing the case or postponing the intubation and returning with appropriate resources (e.g., personnel, equipment, patient preparation, awake intubation). Other options include, but are not limited to, proceeding with procedure utilizing face mask or supraglottic airway ventilation. Pursuit of these options usually implies that ventilation will not be problematic.
ASA DIFFICULT AIRWAY ALGORITHM: PEDIATRIC PATIENTS

Pre-intubation: Before attempting intubation, choose between either an awake or post-induction airway strategy. Choice of strategy and technique should be made by the clinician managing the airway.¹

 susceptible to laryngoscopy?

- Yes
- Suspected difficult ventilation with face mask, supraglottic airway? ²
 - Yes
 - No

CONSIDER AWAKE/SEDATED APPROACH
Transfer to Tertiary center if feasible

- Awake Intubation³
 - SUCCESS
 - FAIL
- Airway electively secured by invasive access⁴
 - SUCCESS
 - Consider other options⁴
 - FAIL
- Postpone the case – terminate sedation if used

OPTIMIZE OXYGENATION THROUGHOUT⁵

LIMIT ATTEMPTS ENSURE ADEQUATE ANESTHETIC DEPTH
Consider calling for help

ASSESS OXYGENATION/VENTILATION WITH FACE MASK/SUPRAGLOTTIC AIRWAY

ADEQUATE AS CONFIRMED BY CO₂

MARGINAL

IMPOSSIBLE

EXCLUDE/TREAT ANATOMICAL AND FUNCTIONAL OBSTRUCTION
CONSIDER CALLING FOR INVASIVE ACCESS OR ECMO

NON-EMERGENCY PATHWAY
CONSIDER EMERGING THE PATIENT⁶
LIMIT ATTEMPTS BE AWARE OF PASSAGE OF TIME (REASSESS VENTILATION AFTER EACH ATTEMPT)

- Consider alternative intubation approaches,⁷ invasive access⁶ or the feasibility of other options⁴

- SUCCESS
- FAIL or deteriorating ventilation

EMERGENCY PATHWAY
CANNOT INTUBATE, CANNOT VENTILATE CALL FOR HELP FOR INVASIVE ACCESS

- Alternative intubation approaches¹ as you prepare for emergency invasive airway⁸
 - FAIL
- SUCCESS

Fig. 2. Difficult airway algorithm: Pediatric patients. ¹The airway manager’s assessment and choice of techniques should be based on their previous experience; available resources, including equipment, availability, and competency of help; and the context in which airway management will occur. ²Low- or high-flow nasal cannula, head elevated position throughout procedure. Noninvasive ventilation during preoxygenation. ³Awake intubation techniques include flexible bronchoscope, videolaryngoscopy, direct laryngoscopy, combined techniques, and retrograde wire-aided intubation. ⁴Other options include, but are not limited to, alternative awake technique, awake elective invasive airway, alternative anesthetic techniques, induction of anesthesia (if unstable or cannot be postponed) with preparations for emergency invasive airway, or postponing the case without attempting the above options. ⁵Invasive airway techniques include surgical cricothyroidotomy, needle cricothyroidotomy if age-appropriate with a pressure-regulated device, large-bore cannula cricothyroidotomy, or surgical tracheostomy. Elective invasive airway techniques include the above and retrograde wire-guided intubation and percutaneous tracheostomy. Also consider rigid bronchoscopy and ECMO. ⁶Includes postponing the case or postponing the intubation and returning with appropriate resources (e.g., personnel, equipment, patient preparation, awake intubation). ⁷Alternative difficult intubation approaches include, but are not limited to, video-assisted laryngoscopy, alternative laryngoscope blades, combined techniques, intubating supraglottic airway (with or without flexible bronchoscopic guidance), flexible bronchoscopy, introducer, and lighted stylets. Adjuncts that may be employed during intubation attempts include tracheal tube introducers, rigid stylets, intubating stylets, or tube changers and external laryngeal manipulation. ⁸Other options include, but are not limited to, proceeding with procedure utilizing face mask or supraglottic airway ventilation. Pursuit of these options usually implies that ventilation will not be problematic.

Fig. 3. Difficult airway infographic: Adult patient example. This figure provides three tools to aid in airway management for the patient with a planned, anticipated difficult, or unanticipated difficult airway.

Part 1 is a decision tool that incorporates relevant elements of evaluation and is intended to assist in the decision to enter the awake airway management pathway or the airway management with the induction of anesthesia pathway of the ASA difficult airway algorithm. Part 2 is an awake intubation algorithm. Part 3 is a strategy for managing patients with induction of anesthesia when an unanticipated difficulty with ventilation (as determined by capnography) with a planned airway technique is encountered. The airway manager’s assessment and choice of techniques should be based on their previous experience, available resources, including equipment, availability, and competency of help; and the context in which airway management will occur.

Review airway strategy: Consider anatomical/physiologic airway difficulty risk, aspiration risk, infection risk, other exposure risk, equipment and monitoring check, role assignment, and backup and rescue plans. Awake techniques include flexible intubation scope, videolaryngoscopy, direct laryngoscopy, supraglottic airway, combined devices, and retrograde wire-aided. Adequate ventilation by any means (e.g., face mask, supraglottic airway, tracheal intubation) should be confirmed by capnography, when possible. Follow-up care includes postextubation care (i.e., steroids, racemic epinephrine), counseling, documentation, team debriefing, and encouraging patient difficult airway registry.

Postpone the case/intubation and return with appropriate resources (e.g., personnel, equipment, patient preparation, awake intubation). Invasive airways include surgical cricothyroidotomy, needle cricothyroidotomy with a pressure-regulated device, large-bore cannula cricothyroidotomy, or surgical tracheostomy. Elective invasive airways include the above, retrograde wire-guided intubation, and percutaneous tracheostomy. Other options include rigid bronchoscopy and ECMO. Invasive airway is performed by an individual trained in invasive airway techniques, whenever possible. In an unstable situation or when airway management is mandatory after a failed awake intubation, a switch to the airway management with the induction of anesthesia pathway may be entered with preparations for an emergency invasive airway. Low- or high-flow nasal cannula, head elevated position throughout procedure. Noninvasive ventilation during preoxygenation. The intent of limiting attempts at tracheal intubation and supraglottic airway insertion is to reduce the risk of bleeding, edema, and other types of trauma that may increase the difficulty of mask ventilation and/or subsequent attempts to secure a definitive airway. Persistent attempts at any airway intervention, including ineffective mask ventilation, may delay obtaining an emergency invasive airway. A reasonable approach may be to limit attempts with any technique class (i.e., face mask, supraglottic airway, tracheal tube) to three, with one additional attempt by a clinician with higher skills. Optimize: suction, relaxants, repositioning. Face mask: oral/nasal airway, two-hand mask grip. Supraglottic airway: size, design, repositioning, first versus second generation. Tracheal tube: introducer, rigid stylet, hyperangulated videolaryngoscopy, blade size, external laryngeal manipulation. Consider other causes of inadequate ventilation (including but not limited to laryngospasm and bronchospasm). First versus second generation supraglottic airway with intubation capability for initial or rescue supraglottic airway. Videolaryngoscopy as an option for initial or rescue tracheal intubation. (Continued)
Practice Guidelines for Difficult Airway Management

Fig. 3 (Continued)

Part 2: Awake Airway Management

Review airway strategy for awake airway management

Awake technique

Fail to establish tracheal intubation

Awake non-emergency pathway

Postpone ** or consider risks and benefits of
- Alternative awake technique
- Awake elective invasive airway
- Alternative anesthetic techniques
- If unstable or can’t be postponed, induction of anesthesia (Part 3) with preparations for emergency invasive airway

Deliver oxygen / optimize oxygenation

Consider call for help

Part 3: Airway Management with Induction of Anesthesia

REVIEW AIRWAY MANAGEMENT STRATEGY

PREOXYGENATE AND INDUCE ANESTHESIA

AIRWAY PLAN SUCCESSFUL?

VENTILATION ADEQUATE?

By any airway technique

Continue as planned

YES

NO

CALL FOR HELP

Use alternative device

Stay time, attempt and SpO2 aware

Invasive airway

Awake patient

Assess ventilation between attempts

Ventilation adequate?

YES

NO

CALL FOR HELP

Non-emergency pathway

Establish secure airway

Emergency pathway

Establish ventilation

Emergency invasive airway

Rigid bronchoscopy, ECMO

Fig. 3 (Continued)
Fig. 4. Difficult airway infographic: Pediatric patient example.
A *Time Out* for identification of the airway management plan. A team-based approach with identification of the following is preferred: the primary airway manager and backup manager and role assignment, the primary equipment and the backup equipment, and the person(s) available to help. Contact an ECMO team/otolaryngologic surgeon if noninvasive airway management is likely to fail (e.g., congenital high airway obstruction, airway tumor, etc.).
B Color scheme. The colors represent the ability to oxygenate/ventilate: green, easy oxygenation/ventilation; yellow, difficult or marginal oxygenation/ventilation; and red, impossible oxygenation/ventilation. Reassess oxygenation/ventilation after each attempt and move to the appropriate box based on the results of the oxygenation/ventilation check.
C Nonemergency pathway (oxygenation/ventilation adequate for an intubation known or anticipated to be challenging): deliver oxygen throughout airway management; attempt airway management with the technique/device most familiar to the primary airway manager; select from the following devices: supraglottic airway, videolaryngoscopy, flexible bronchoscopy, or a combination of these devices (e.g., flexible bronchoscopic intubation through the supraglottic airway); other techniques (e.g., lighted stylets or rigid stylets may be used at the discretion of the clinician); optimize and alternate devices as needed; reassess ventilation after each attempt; limit direct laryngoscopy attempts (e.g., one attempt) with consideration of standard blade videolaryngoscopy in lieu of direct laryngoscopy; limit total attempts (insertion of the intubating device until its removal) by the primary airway manager (e.g., three attempts) and one additional attempt by the secondary airway manager; after four attempts, consider emerging the patient or using advanced invasive techniques.
D Marginal/emergency pathway (poor or no oxygenation/ventilation for an intubation known or anticipated to be challenging): treat functional (e.g., airway reflexes with drugs) and anatomical (mechanical) obstruction; attempt to improve ventilation with facemask, tracheal intubation, and supraglottic airway as appropriate; and if all options fail, consider emerging the patient or using advanced invasive techniques.
E Consider a team debrief after all difficult airway encounters: identify processes that worked well and opportunities for improvement and provide emotional support to members of the team, particularly when there is patient morbidity or mortality.

References

A report of three cases. Can Anaesth Soc J 1986; 33:364–70

114. Sarma J: Unexpected difficult intubation in a patient with prominent mandibular tori. Open Anesthesiol J 2015; 8:TOATJ-8–1

136. Ul Haq MI, Ullah H: Comparison of Mallampati test with lower jaw protrusion maneuver in predicting
160. Abbasijahromi A, Sanie Jahromi MS, Farzaneh M, Javapour S, Montaseri MA, Kalani N: Success in
difficult airway managements with video laryngoscopy after two failures in intubation with Macintosh and McCoy laryngoscope: A case report. Iran Red Crescent Med J 2017; 19:e60283

162. Abdelhady BS, Elrabiey MA, Abd Elrahman AH, Mohamed EE: Ultrasonography versus conventional methods (Mallampati score and thyromental distance) for prediction of difficult airway in adult patients. Egypt J Anaesth 2020; 36:83–9

neck as predictive markers of difficult direct laryngoscopy in men and women: A prospective study. Indian J Anaesth 2014; 58:176–82

plane for the prediction of difficult laryngoscopies in Chinese adults. BMC Anesthesiol 2020; 20:134
237. Leary JA: Mechanical failure of the McCoy laryngoscope during a difficult intubation. Anaesthesia 2001; 56:88–9

277. Gupta A, Gupta N: Anterior laryngeal web leading to unanticipated difficult tracheal intubation in a neonate diagnosed and managed successfully with

300. Alvis BD, King AB, Hester D, Hughes CG, Higgins MS: Randomized controlled pilot trial of the rigid and flexible laryngoscope versus the fiberoptic bronchoscope for intubation of potentially difficult airway. Minerva Anestesiologica 2015; 81:946–50

325. Ikram M, Mahboob S: Anesthetic challenges in a large multinodular thyroidectomy at a peripheral hospital. Anaesth Pain Intens Care 2019; 23:311–3

343. Raval CB, Khan S: Airway management in submandibular abscess patient with awake fibreoptic
400. Roodneshin F: Sevoflurane as the single anesthetic agent for management of anticipated pediatric difficult airway. Tanaffos 2012; 11:69–72

416. Langeron O, Sempjen F, Bourgain JL, Marsac A, Cros AM: Comparison of the intubating laryngeal mask airway with the fiberoptic intubation in anticipated difficult airway management. ANESTHESIOLOGY 2001; 94:968–72

Anesthesiology 2021; XXX:00–00

Practice Guidelines for Difficult Airway Management

496. Harirhan U, Shah SB, Naithani BK: Difficult intubation due to outgrowth between the epiglottic fold and the vocal cords: C-MAC™ to our rescue! Sri Lankan J Anaesthesiol 2015; 23:43–4

502. Takeshita S, Ueda H, Goto T, Muto D, Kakita H, Oshima K, Tainaka T, Ono T, Kazaoka Y, Yamada Y: Case report of Pierre Robin sequence with severe upper airway obstruction who was rescued by fiberoptic nasotracheal intubation. BMC Anesthesiol 2017; 17:43

reliably provides rescue ventilation in cases of unanticipated difficult tracheal intubation along with difficult mask ventilation. Anesth Analg 1998; 87:661–5

512. Palmer JH, Ball DR: Awake tracheal intubation with the intubating laryngeal mask in a patient with diffuse idiopathic skeletal hyperostosis. Anaesthesia 2000; 55:70–4

547. Liang H, Hou Y, Wei H, Feng Y: Supraglottic jet oxygenation and ventilation assisted fiberoptic intubation in a paralyzed patient with morbid obesity and obstructive sleep apnea: A case report. BMC Anesthesiol 2019; 19

